Funksional tenglama
Jump to navigation
Jump to search
Matematikada funksional tenglama[1][2][3][4] — nomaʼlumi funksiya boʻlib keladigan har qanday tenglama. Koʻpincha, tenglama funksiyaning (yoki funksiyalarning) bir nuqtadagi qiymatini boshqa nuqtalardagi qiymatlari bilan bogʻlaydi. Masalan, Masalan, funksiyalarning qiymatlarini ular qanoatlantiradigan funksional tenglamalarning turlarini koʻrib chiqish orqali aniqlash mumkin. Funksional tenglama atamasi odatda algebraik tenglamalar yoki differensial tenglamalarga keltirish mumkin boʻlmagan tenglamalarni anglatadi.
Misol[tahrir]
- koʻrinishidagi tenglamani Riemann zeta funksiyasi qanoatlantiradi. Bu yerdagi Γ harfi gamma-funksiyani anglatadi.
Izohlar[tahrir]
- ↑ Rassias, Themistocles M. (2000). Functional Equations and Inequalities. 3300 AA Dordrecht, The Netherlands: Kluwer Academic Publishers, 335. ISBN 0-7923-6484-8.
- ↑ Hyers, D. H. (1998). Stability of Functional Equations in Several Variables. Boston: Birkhäuser Verlag, 313. ISBN 0-8176-4024-X.
- ↑ Jung, Soon-Mo (2001). Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. 35246 US 19 North # 115, Palm Harbor, FL 34684 USA: Hadronic Press, Inc., 256. ISBN 1-57485-051-2.
- ↑ Czerwik, Stephan (2002). Functional Equations and Inequalities in Several Variables. P O Box 128, Farrer Road, Singapore 912805: World Scientific Publishing Co., 410. ISBN 981-02-4837-7.
Manbalar[tahrir]
- János Aczél, Lectures on Functional Equations and Their Applications, Academic Press, 1966, reprinted by Dover Publications, ISBN 0486445232 .
- János Aczél & J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989.
- C. Efthimiou, Introduction to Functional Equations, AMS, 2011, ISBN 978-0-8218-5314-6 ; online.
- Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer, 2009.
- Marek Kuczma, Introduction to the Theory of Functional Equations and Inequalities, second edition, Birkhäuser, 2009.
- Henrik Stetkær, Functional Equations on Groups, first edition, World Scientific Publishing, 2013.
- Christopher G. Small (3-aprel 2007). Functional Equations and How to Solve Them. Springer Science & Business Media. ISBN 978-0-387-48901-8.
Havolalar[tahrir]
- Funksional tenglamalar va ularning yechilish usullari EqWorld saytida