Cobalt oksidi nanozaras

Vikipediya, ochiq ensiklopediya

Materiallar va elektr batareyalarini tadqiq qilishda kobalt oksidi nanozarralari odatda kobalt (II, III) oksidi Co zarralarini nazarda tutadi.Co</br> Co O</br> Co nanometr o'lchamdagi, turli shakl va kristall tuzilmalarga ega.

Kobalt oksidi nanozarralari litiy-ionli batareyalar [1][2] va elektron gaz sensorlarida potentsial ilovalarga ega.[3][4]

Lityum-ion batareya[tahrir | manbasini tahrirlash]

Lityum-ionli batareyalarning katodlari ko'pincha kobalt, nikel yoki marganetsning litiylangan oksidlaridan iborat bo'lib, ular lityum ionlarini molekulyar tuzilishiga osongina va qaytarilishi mumkin. Kobalt oksidi nanomateriallari, masalan, nanotubalar litiy kationlarini tashish uchun yuqori sirt-hajm nisbati va qisqa yo'l uzunligini taklif qiladi, bu esa tez zaryadlash qobiliyatiga olib keladi. Biroq, SEI ning haddan tashqari shakllanishi tufayli sig'im, kulon samaradorligi va aylanish muddati zarar ko'rishi mumkin. Nanosimlar boshqa moddalarni, masalan, difenilalaninni o'z ichiga olishi mumkin.[5]

Kobalt oksidi (Co 3 O 4 ) nanozarralari bitta grafen varag'iga biriktirilgan.

Kobalt oksidi zarralari anodning o'lchov barqarorligini yaxshilash va lityum zaryadlash va tushirish jarayonlarida zarrachalar yig'ilishining oldini olish uchun grafen kabi substratlarga biriktirilishi mumkin.

Dori[tahrir | manbasini tahrirlash]

Kobalt oksidi nanozarralari hujayralarga osongina kirib borishi kuzatilgan, bu xususiyat gipertermik davolash, gen terapiyasi va dori vositalarini etkazib berishda qo'llanilishiga olib kelishi mumkin. Biroq, ularning toksikligi engib o'tish kerak bo'lgan to'siqdir.[6]

Gidrotermal[tahrir | manbasini tahrirlash]

Kobalt oksidi ko'pincha avtoklavda gidrotermik sintez yo'li bilan olinadi.[7]

Metall oksidi ichi bo'sh sharlarning bir qozonli gidrotermik sintezi suvda 100-200 °C da erigan uglevodlar va metall tuzlari bilan boshlanadi. °C. Reaksiya natijasida hidrofobik qobiqqa integratsiyalangan metall ionlari bilan uglerodli sharlar hosil bo'ladi. Uglerod yadrolari kalsinatsiya yo'li bilan chiqariladi, ichi bo'sh metall oksidi sharlari qoladi. Qobiqning sirt maydoni va qalinligini uglevodni metall tuzi konsentratsiyasiga, shuningdek, reaksiya muhitining harorati, bosimi va pH qiymatini va boshlang'ich tuzlarning kationlarini o'zgartirish orqali boshqarish mumkin.[8] Jarayonni yakunlash vaqti soatdan kungacha o'zgarib turadi.[9]

Kobalt oksidi ichi bo'sh sferaning gidrotermik sintezi.

Xavfsizlik[tahrir | manbasini tahrirlash]

Aksariyat kobalt birikmalari singari, kobalt oksidi nanozarralari ham odamlar va suv hayoti uchun zaharli hisoblanadi.

Manbaalar[tahrir | manbasini tahrirlash]

  1. Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H. (17 December 2007). „Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material For Li-Battery Applications“. Advanced Materials. 19-jild, № 24. 4505–4509-bet. doi:10.1002/adma.200602513.
  2. Wu, Zhong-Shuai; Ren, Wencai; Wen, Lei; Gao, Libo; Zhao, Jinping; Chen, Zongping; Zhou, Guangmin; Li, Feng; Cheng, Hui-Ming (22 June 2010). „Graphene Anchored with CoO Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance“. ACS Nano. 4-jild, № 6. 3187–3194-bet. doi:10.1021/nn100740x.
  3. Park, Jinsoo; Shen, Xiaoping; Wang, Guoxiu (March 2009). „Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres“. Sensors and Actuators B: Chemical. 136-jild, № 2. 494–498-bet. doi:10.1016/j.snb.2008.11.041.
  4. Li, Wei; Jung, Hyuck; Hoa, Nguyen Duc; Kim, Dojin; Hong, Soon-Ku; Kim, Hyojin (September 2010). „Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for a gas sensor application“. Sensors and Actuators B: Chemical. 150-jild, № 1. 160–166-bet. doi:10.1016/j.snb.2010.07.023.
  5. Ryu, Jungki; Kim, Sung-Wook; Kang, Kisuk; Park, Chan Beum (26 January 2010). „Synthesis of Diphenylalanine/Cobalt Oxide Hybrid Nanowires and Their Application to Energy Storage“. ACS Nano. 4-jild, № 1. 159–164-bet. doi:10.1021/nn901156w.
  6. Papis, Elena; Rossi, Federica; Raspanti, Mario; Dalle-Donne, Isabella; Colombo, Graziano; Milzani, Aldo; Bernardini, Giovanni; Gornati, Rosalba (September 2009). „Engineered cobalt oxide nanoparticles readily enter cells“. Toxicology Letters. 189-jild, № 3. 253–259-bet. doi:10.1016/j.toxlet.2009.06.851.
  7. Whittingham, M Stanley (April 1996). „Hydrothermal synthesis of transition metal oxides under mild conditions“. Current Opinion in Solid State and Materials Science. 1-jild, № 2. 227–232-bet. doi:10.1016/S1359-0286(96)80089-1.
  8. Titirici, Maria-Magdalena; Antonietti, Markus; Thomas, Arne (August 2006). „A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach“. Chemistry of Materials. 18-jild, № 16. 3808–3812-bet. doi:10.1021/cm052768u.
  9. Lu, An-Hui; Salabas, E. L.; Schüth, Ferdi (12 February 2007). „Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application“. Angewandte Chemie International Edition. 46-jild, № 8. 1222–1244-bet. doi:10.1002/anie.200602866. PMID 17278160.