Magnit induksiya

Vikipediya, ochiq ensiklopediya

Magnit induksiya (magnit induksiya vektori) — magnit maydonning asosiy tavsifi boʻlgan vektor (v)’, uning kattaligi va yoʻnalishi magnit maydonning unda joylashtirilgan tokli oʻtkazgichga taʼsiri bilan aniqlanadi. Magnit induksiya alohida elektronlar va boshqa elementar zarralar hosil qilgan mikroskopik magnit maydonlar yigʻindi kuchlanganligining oʻrtacha qiymatini ifodalovchi magnit maydonning asosiy tavsifi. Magnit maydonning Magnit induksiya vektorini magnit maydon kuchlanganligi N vektori va magnitlanganlik vektori J orqali ifodalash mumkin. SGS birliklar tizimida Magnitlanganlik hajm birligining magnit momentksh ifodalaydi.[1]

Magnit induksiyasi- magnit maydon tomonidan zaryadlangan zarrachaga ta’sir qiladigan kuch bilan aniqlanadigan, magnit maydonni tavsiflovchi vector kattalik.  1820-yil daniyalik olim G. Ersted tokning magnit ta’sirini kashf qilgach, ingliz olimi Maykl Faradey magnit maydon orqali elektr tokini hosil qilishni o‘ziga maqsad qildi.

2.1-rasm

U bu masala ustida 10 yildan ortiq ishlab, 1831-yili uni ijobiy hal qildi. a b d 2.1-rasm. Ko‘rgazmali asboblardan foydalangan holda Faradey tomonidan o‘tkazilgan tajribani qaraylik. U g‘altak va galvanometrni ketma-ket ulab, berk zanjir hosil qildi (2.1-rasm). G‘altak ichiga doimiy magnit kiritilayotganda, galvanometr strelkasining og‘ishi kuzatiladi. Bunda g‘altakda tok hosil bo‘ladi (2.1-a rasm). Agar magnitni harakatlantirmay g‘altak ichida tinch tutib turilsa galvanometr strelkasi nolni ko‘rsatadi, ya’ni g‘altakda tokning yo‘qolganligi kuzatiladi (2.1-b rasm). Magnit g‘altak ichidan sug‘urib olinayotganda esa, yana g‘altakda tokning hosil bo‘lganligi kuzatiladi. Bunda galvanometr strelkasi teskari tomonga og‘adi (2.1-d rasm). Agar magnit tinch holda bo‘lib, galtak harakatga keltirilsa ham, shu hodisani kuzatamiz. Demak, g‘altakni kesib o‘tayotgan magnit oqimi har qanday yo‘l bilan o‘zgartirilganda g‘altakda elektr yurituvchi kuch hosil bo‘lar ekan. 27 Simli ramkaning uchlari bir-biriga to‘g‘ridan to‘g‘ri (yoki ularning uchlari biror asbob orqali) ulangan bo‘lsa, uni berk kontur deb atash mumkin. U holda galvanometrga ulangan g‘altak o‘zaro ketma-ket ulangan berk konturni tashkil qiladi. Magnit maydonning oqimi o‘zgarishi tufayli berk konturda elektr tokining hosil bo‘lish hodisasini elektromagnit induksiya hodisasi, konturda yuzaga kelgan tok esa induksion tok deb ataladi. Faradey o‘zi amalga oshirgan tajriba natijalarini tahlil qilib, quyidagi xulosaga keldi: induksion tok berk konturda faqat o‘tkazgich konturi orqali o‘tayotgan magnit induksiya oqimi o‘zgarganda yuzaga keladi, ya’ni magnit oqimi o‘zgarib turgan vaqt davomidagina mavjud bo‘ladi. Bu xulosa elektromagnit induksiya qonuni deb ham yuritiladi. Ma’lumki, elektr zanjirida tok uzoq vaqt mavjud bo‘lib turishi uchun zanjirning biror qismida elektr yurituvchi kuch (EYuK) manbayi bo‘lishi kerak. Konturda doimiy ravishda magnit oqimining o‘zgarib turishi natijasida hosil bo‘lgan EYuK unda induksion tokni vujudga keltiruvchi tashqi manba vazifasini bajaradi. Induksion tokni hosil qiluvchi EYuK induksiya elektr yurituvchi kuch deyiladi. Yopiq konturda hosil bo‘lgan elektromagnit induksiya EYuK, son qiymati jihatidan shu konturni kesib o‘tgan magnit oqimi o‘zgarishiga teng va ishorasi jihatidan qarama-qarshidir:

                                      (2.1–1)

Bunga elektromagnit induksiya qonuni yoki Faradey–Maksvell qonuni deyiladi. (2.1–1) ifodadagi (–) ishora konturda vujudga kеladigan induksiоn tоkning уo‘nalishi bilan bog‘liq bo‘lib, y Lens qoidasiga ko‘ra tushuntiriladi. XBSda induksiya elektr yurituvchi kuchning birligi qilib volt (V) qabul qilingan.


Agar kontur N ta o‘ramdan iborat bo‘lsa, konturda hosil bo‘lgan induksiya EYuK quyidagi ifoda yordamida hisoblanadi:

                    (2.1–2)

Manbalar

  1. OʻzME. Birinchi jild. Toshkent, 2000-yil