Kometabolizm

Vikipediya, ochiq ensiklopediya

Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.[1][2]

Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.[3][2]

Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.[4][2]

Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.[5][2]

Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.[6][2]

Kometabolizm ikki birikmaning bir vaqtning o'zida degradatsiyasi sifatida aniqlanadi, bunda ikkinchi birikmaning (ikkilamchi substrat ) degradatsiyasi birinchi birikma (birlamchi substrat ) mavjudligiga bog'liq. [7] Bu har bir substrat turli fermentlar tomonidan bir vaqtning o'zida katabolize bo'lgan bir vaqtning o'zida katabolizmadan farq qiladi. [7] [8] Kometabolizm organizm tomonidan uning o'sishi degradatsiyasini katalizlash uchun ishlab chiqarilgan ferment-undan energiya va uglerod olish uchun substrat ham qo'shimcha birikmalarni parchalashga qodir bo'lganda paydo bo'ladi.Ushbu qo'shimcha birikmalarning tasodifiy degradatsiyasi bakteriyalarning o'sishini qo'llab-quvvatlamaydi va bu birikmalarning ba'zilari bakteriyalar uchun ma'lum konsentratsiyalarda hatto toksik bo'lishi ham mumkin. [9] [10]

Ushbu hodisaning birinchi hisoboti etanning Pseudomonas methanica(<a href="https://en.wikipedia.org/wiki/Pseudomonas_methanica" rel="mw:ExtLink" title="Pseudomonas methanica" class="mw-redirect cx-link" data-linkid="15">Pseudomonas methanica</a>) turlari tomonidan parchalanishi edi. [10] Bu bakteriyalar metan monooksigenaza (MMO)(<a href="https://en.wikipedia.org/wiki/Methane_monooxygenase" rel="mw:ExtLink" title="Methane monooxygenase" class="cx-link" data-linkid="17">methane monooxygenase (MMO)</a>) fermenti yordamida o'sish-substrat metanini parchalaydi. MMO etan va propanni parchalash qobiliyatiga ega ekanligi aniqlandi, ammo bakteriyalar o'sishi bu birikmalardan energiya va uglerod manbalari sifatida foydalana olmagan. [10]

Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.[11][2]

  1. Beam, H. W.; Perry, J. J. (1973-03-01). "Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons" (en). Archiv für Mikrobiologie 91 (1): 87–90. doi:10.1007/BF00409542. ISSN 0003-9276. PMID 4711459. 
  2. 2,0 2,1 2,2 2,3 2,4 2,5 Ryoo, D.; Shim, H.; Canada, K.; Barbieri, P.; Wood, T. K. (July 2000). "Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1". Nature Biotechnology 18 (7): 775–778. doi:10.1038/77344. ISSN 1087-0156. PMID 10888848. https://archive.org/details/sim_nature-biotechnology_2000-07_18_7/page/775. Ryoo, D.; Shim, H.; Canada, K.; Barbieri, P.; Wood, T. K. (July 2000). "Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1". Nature Biotechnology. 18 (7): 775–778. doi:10.1038/77344. ISSN 1087-0156. PMID 10888848. S2CID 19633783. Manba xatosi: Invalid <ref> tag; name ":3" defined multiple times with different content
  3. Beam, H. W.; Perry, J. J. (1973-03-01). "Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons" (en). Archiv für Mikrobiologie 91 (1): 87–90. doi:10.1007/BF00409542. ISSN 0003-9276. PMID 4711459. 
  4. Beam, H. W.; Perry, J. J. (1973-03-01). "Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons" (en). Archiv für Mikrobiologie 91 (1): 87–90. doi:10.1007/BF00409542. ISSN 0003-9276. PMID 4711459. 
  5. Beam, H. W.; Perry, J. J. (1973-03-01). "Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons" (en). Archiv für Mikrobiologie 91 (1): 87–90. doi:10.1007/BF00409542. ISSN 0003-9276. PMID 4711459. 
  6. Beam, H. W.; Perry, J. J. (1973-03-01). "Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons" (en). Archiv für Mikrobiologie 91 (1): 87–90. doi:10.1007/BF00409542. ISSN 0003-9276. PMID 4711459. 
  7. 7,0 7,1 Joshua, C. J.; Dahl, R.; Benke, P. I.; Keasling, J. D. (2011). "Absence of Diauxie during Simultaneous Utilization of Glucose and Xylose by Sulfolobus acidocaldarius". J Bacteriol 193 (6): 1293–1301. doi:10.1128/JB.01219-10. PMID 21239580. PMC 3067627. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3067627. 
  8. Gulvik, C. A.; Buchan, A. (2013). "Simultaneous catabolism of plant-derived aromatic compounds results in enhanced growth for members of the Roseobacter lineage". Appl Environ Microbiol 79 (12): 3716–3723. doi:10.1128/AEM.00405-13. PMID 23563956. PMC 3675927. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3675927. 
  9. Qin, Ke; Struckhoff, Garrett C.; Agrawal, Abinash; Shelley, Michael L.; Dong, Hailiang (2015-01-01). "Natural attenuation potential of tricholoroethene in wetland plant roots: Role of native ammonium-oxidizing microorganisms". Chemosphere 119 (Supplement C): 971–977. doi:10.1016/j.chemosphere.2014.09.040. PMID 25303656. 
  10. 10,0 10,1 10,2 Nzila, Alexis (2013-07-01). "Update on the cometabolism of organic pollutants by bacteria". Environmental Pollution 178 (Supplement C): 474–482. doi:10.1016/j.envpol.2013.03.042. PMID 23570949.  Manba xatosi: Invalid <ref> tag; name ":2" defined multiple times with different content
  11. Beam, H. W.; Perry, J. J. (1973-03-01). "Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons" (en). Archiv für Mikrobiologie 91 (1): 87–90. doi:10.1007/BF00409542. ISSN 0003-9276. PMID 4711459.