Matematik model
Matematik model – matematik timsollar, belgilar va hodisalar sinfining taxminan namunasi, bayoni. Matematik model tizimni matematik izohlash uchun ishlatiluvchi abstrakt model boʻlib, maʼlum bir hodisa va jarayonni matematik formula va bogʻlanishlar orqali tushuntirib beradi. Obyektiv dunyo hodisalarini toʻliq aks ettiradigan Matematik model qurish mumkin emas, lekin istalgan aniqlikda toʻgʻri aks ettiradigan Matematik model qurish mumkin. Matematik model 4 bosqichga boʻlinadi: modelning asosiy obyektlarini bogʻlovchi qonunlarni shakllantirish; Matematik model olib keladigan matematik masalalarni yechish; modelning nazariyaga mos kelishini aniqlash, modelni tahlil qilish va takomillashtirish. Matematik modelning klassik namunalaridan biri suyuqlik harakatini oʻrganishdir. Dastlab, 18-asrda suyuqlik qisilmaydigan bir jinsli, faqat massa va energiya saqlanishi qonuniga boʻysunadigan modda („ideal qisilmaydigan suyuqlik“) deb olingan. Shularga asoslanib qurilgan Matematik modelda suyuqlik harakati maxsus differensial tenglamalar bilan ifodalangan. Keyinchalik bu Matematik model takomillashtirilib, suyuqlikning qisiluvchanligi, yopishqoqligi, molekulyar tuzilishi, uyurma hosil boʻlishi, issikdik, elektr va boshqa taʼsirlar hisobiga olingan differensial tenglamalari tuzilgan. Matematik model fizika, astronomiya, biol., iqtisodiyot, tibbiyot va boshqa sohalarda asosiy tadqiqot usuli hisoblanadi[1]
Manbalar
[tahrir | manbasini tahrirlash]Ushbu maqolada Oʻzbekiston milliy ensiklopediyasi (2000-2005) maʼlumotlaridan foydalanilgan. |
Bu andozani aniqrogʻiga almashtirish kerak. |