Kontent qismiga oʻtish
Asosiy menyu
Asosiy menyu
yonqutiga oʻtish
yashirish
Qatnovi
Bosh Sahifa
Tanlangan maqolalar
Yangi sahifalar
Tasodifiy maqola
Maqolalar indeksi
Ishtirok
Xato haqida xabar berish
Yangi oʻzgarishlar
Jamoa portali
Qoidalar
Yordam
Forum
Aloqa
Qidiruv
Qidirish
Qiyofa
Loyihaga koʻmak
Hisob yaratish
Kirish
Shaxsiy uskunalar
Loyihaga koʻmak
Hisob yaratish
Kirish
Chiqishni amalga oshirgan tahrirchilar uchun sahifalar
batafsil maʼlumot
Qoʻshilgan hissa
Munozara
Giperbolik funksiyalarning integrallar jadvali
34 ta til
العربية
Български
Bosanski
Català
Čeština
Чӑвашла
English
Español
Euskara
فارسی
Français
Galego
Hrvatski
Magyar
Հայերեն
Bahasa Indonesia
Italiano
日本語
ភាសាខ្មែរ
한국어
Македонски
Nederlands
Português
Română
Русский
Srpskohrvatski / српскохрватски
Slovenčina
Slovenščina
Српски / srpski
தமிழ்
Türkçe
Українська
Tiếng Việt
中文
Ishoratlarni tahrirla
Maqola
Munozara
lotin/кирилл
lotin/кирилл
lotin
кирилл
Mutolaa
Tahrirlash
Manbasini tahrirlash
Tarix
Asboblar
Asboblar
yonqutiga oʻtish
yashirish
Amallar
Mutolaa
Tahrirlash
Manbasini tahrirlash
Tarix
Umumiy
Bu yerga ishoratlar
Bogʻliq oʻzgarishlar
Maxsus sahifalar
Doimiy havola
Sahifa haqida maʼlumot
Sahifadan matn parchasi ajratish
Qisqartirilgan URL-manzilni olish
QR-kodni yuklab olish
Nashr/eksport qilish
PDF sifatida yuklash
Bosma uchun versiya
Boshqa loyihalarda
Vikimaʼlumotlar bandi
Qiyofa
yonqutiga oʻtish
yashirish
Vikipediya, ochiq ensiklopediya
Izoh. Hamma
integrallarda
oʻzgarmas qoʻshiluvchi tushirib qoldirilgan.
∫
sh
c
x
d
x
=
1
c
ch
c
x
{\displaystyle \int \operatorname {sh} cx\,dx={\frac {1}{c}}\operatorname {ch} cx}
∫
ch
c
x
d
x
=
1
c
sh
c
x
{\displaystyle \int \operatorname {ch} cx\,dx={\frac {1}{c}}\operatorname {sh} cx}
∫
sh
2
c
x
d
x
=
1
4
c
sh
2
c
x
−
x
2
{\displaystyle \int \operatorname {sh} ^{2}cx\,dx={\frac {1}{4c}}\operatorname {sh} 2cx-{\frac {x}{2}}}
∫
ch
2
c
x
d
x
=
1
4
c
sh
2
c
x
+
x
2
{\displaystyle \int \operatorname {ch} ^{2}cx\,dx={\frac {1}{4c}}\operatorname {sh} 2cx+{\frac {x}{2}}}
∫
sh
n
c
x
d
x
=
1
c
n
sh
n
−
1
c
x
ch
c
x
−
n
−
1
n
∫
sh
n
−
2
c
x
d
x
(
n
>
0
)
{\displaystyle \int \operatorname {sh} ^{n}cx\,dx={\frac {1}{cn}}\operatorname {sh} ^{n-1}cx\operatorname {ch} cx-{\frac {n-1}{n}}\int \operatorname {sh} ^{n-2}cx\,dx\qquad {\mbox{( }}n>0{\mbox{)}}}
также:
∫
sh
n
c
x
d
x
=
1
c
(
n
+
1
)
sh
n
+
1
c
x
ch
c
x
−
n
+
2
n
+
1
∫
sh
n
+
2
c
x
d
x
(
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \operatorname {sh} ^{n}cx\,dx={\frac {1}{c(n+1)}}\operatorname {sh} ^{n+1}cx\operatorname {ch} cx-{\frac {n+2}{n+1}}\int \operatorname {sh} ^{n+2}cx\,dx\qquad {\mbox{( }}n<0{\mbox{, }}n\neq -1{\mbox{)}}}
∫
ch
n
c
x
d
x
=
1
c
n
sh
c
x
ch
n
−
1
c
x
+
n
−
1
n
∫
ch
n
−
2
c
x
d
x
(
n
>
0
)
{\displaystyle \int \operatorname {ch} ^{n}cx\,dx={\frac {1}{cn}}\operatorname {sh} cx\operatorname {ch} ^{n-1}cx+{\frac {n-1}{n}}\int \operatorname {ch} ^{n-2}cx\,dx\qquad {\mbox{( }}n>0{\mbox{)}}}
также:
∫
ch
n
c
x
d
x
=
−
1
c
(
n
+
1
)
sh
c
x
ch
n
+
1
c
x
−
n
+
2
n
+
1
∫
ch
n
+
2
c
x
d
x
(
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \operatorname {ch} ^{n}cx\,dx=-{\frac {1}{c(n+1)}}\operatorname {sh} cx\operatorname {ch} ^{n+1}cx-{\frac {n+2}{n+1}}\int \operatorname {ch} ^{n+2}cx\,dx\qquad {\mbox{(}}n<0{\mbox{, }}n\neq -1{\mbox{)}}}
∫
d
x
sh
c
x
=
1
c
ln
|
th
c
x
2
|
=
1
c
ln
|
ch
c
x
−
1
sh
c
x
|
=
1
c
ln
|
sh
c
x
ch
c
x
+
1
|
=
1
c
ln
|
ch
c
x
−
1
ch
c
x
+
1
|
{\displaystyle \int {\frac {dx}{\operatorname {sh} cx}}={\frac {1}{c}}\ln \left|\operatorname {th} {\frac {cx}{2}}\right|={\frac {1}{c}}\ln \left|{\frac {\operatorname {ch} cx-1}{\operatorname {sh} cx}}\right|={\frac {1}{c}}\ln \left|{\frac {\operatorname {sh} cx}{\operatorname {ch} cx+1}}\right|={\frac {1}{c}}\ln \left|{\frac {\operatorname {ch} cx-1}{\operatorname {ch} cx+1}}\right|}
∫
d
x
sh
2
c
x
=
−
1
c
cth
c
x
{\displaystyle \int {\frac {dx}{\operatorname {sh} ^{2}cx}}=-{\frac {1}{c}}\operatorname {cth} cx}
∫
d
x
ch
c
x
=
2
c
arctg
e
c
x
{\displaystyle \int {\frac {dx}{\operatorname {ch} cx}}={\frac {2}{c}}\operatorname {arctg} e^{cx}}
∫
d
x
ch
2
c
x
=
1
c
th
c
x
{\displaystyle \int {\frac {dx}{\operatorname {ch} ^{2}cx}}={\frac {1}{c}}\operatorname {th} cx}
∫
d
x
sh
n
c
x
=
ch
c
x
c
(
n
−
1
)
sh
n
−
1
c
x
−
n
−
2
n
−
1
∫
d
x
sh
n
−
2
c
x
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{\operatorname {sh} ^{n}cx}}={\frac {\operatorname {ch} cx}{c(n-1)\operatorname {sh} ^{n-1}cx}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\operatorname {sh} ^{n-2}cx}}\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫
d
x
ch
n
c
x
=
sh
c
x
c
(
n
−
1
)
ch
n
−
1
c
x
+
n
−
2
n
−
1
∫
d
x
ch
n
−
2
c
x
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{\operatorname {ch} ^{n}cx}}={\frac {\operatorname {sh} cx}{c(n-1)\operatorname {ch} ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\operatorname {ch} ^{n-2}cx}}\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫
ch
n
c
x
sh
m
c
x
d
x
=
ch
n
−
1
c
x
c
(
n
−
m
)
sh
m
−
1
c
x
+
n
−
1
n
−
m
∫
ch
n
−
2
c
x
sh
m
c
x
d
x
(
m
≠
n
)
{\displaystyle \int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m}cx}}dx={\frac {\operatorname {ch} ^{n-1}cx}{c(n-m)\operatorname {sh} ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\operatorname {ch} ^{n-2}cx}{\operatorname {sh} ^{m}cx}}dx\qquad {\mbox{( }}m\neq n{\mbox{)}}}
также:
∫
ch
n
c
x
sh
m
c
x
d
x
=
−
ch
n
+
1
c
x
c
(
m
−
1
)
sh
m
−
1
c
x
+
n
−
m
+
2
m
−
1
∫
ch
n
c
x
sh
m
−
2
c
x
d
x
(
m
≠
1
)
{\displaystyle \int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m}cx}}dx=-{\frac {\operatorname {ch} ^{n+1}cx}{c(m-1)\operatorname {sh} ^{m-1}cx}}+{\frac {n-m+2}{m-1}}\int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m-2}cx}}dx\qquad {\mbox{( }}m\neq 1{\mbox{)}}}
также:
∫
ch
n
c
x
sh
m
c
x
d
x
=
−
ch
n
−
1
c
x
c
(
m
−
1
)
sh
m
−
1
c
x
+
n
−
1
m
−
1
∫
ch
n
−
2
c
x
sh
m
−
2
c
x
d
x
(
m
≠
1
)
{\displaystyle \int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m}cx}}dx=-{\frac {\operatorname {ch} ^{n-1}cx}{c(m-1)\operatorname {sh} ^{m-1}cx}}+{\frac {n-1}{m-1}}\int {\frac {\operatorname {ch} ^{n-2}cx}{\operatorname {sh} ^{m-2}cx}}dx\qquad {\mbox{( }}m\neq 1{\mbox{)}}}
∫
sh
m
c
x
ch
n
c
x
d
x
=
sh
m
−
1
c
x
c
(
m
−
n
)
ch
n
−
1
c
x
+
m
−
1
m
−
n
∫
sh
m
−
2
c
x
ch
n
c
x
d
x
(
m
≠
n
)
{\displaystyle \int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n}cx}}dx={\frac {\operatorname {sh} ^{m-1}cx}{c(m-n)\operatorname {ch} ^{n-1}cx}}+{\frac {m-1}{m-n}}\int {\frac {\operatorname {sh} ^{m-2}cx}{\operatorname {ch} ^{n}cx}}dx\qquad {\mbox{( }}m\neq n{\mbox{)}}}
также:
∫
sh
m
c
x
ch
n
c
x
d
x
=
sh
m
+
1
c
x
c
(
n
−
1
)
ch
n
−
1
c
x
+
m
−
n
+
2
n
−
1
∫
sh
m
c
x
ch
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n}cx}}dx={\frac {\operatorname {sh} ^{m+1}cx}{c(n-1)\operatorname {ch} ^{n-1}cx}}+{\frac {m-n+2}{n-1}}\int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n-2}cx}}dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
также:
∫
sh
m
c
x
ch
n
c
x
d
x
=
−
sh
m
−
1
c
x
c
(
n
−
1
)
ch
n
−
1
c
x
+
m
−
1
n
−
1
∫
sh
m
−
2
c
x
ch
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n}cx}}dx=-{\frac {\operatorname {sh} ^{m-1}cx}{c(n-1)\operatorname {ch} ^{n-1}cx}}+{\frac {m-1}{n-1}}\int {\frac {\operatorname {sh} ^{m-2}cx}{\operatorname {ch} ^{n-2}cx}}dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫
x
sh
c
x
d
x
=
1
c
x
ch
c
x
−
1
c
2
sh
c
x
{\displaystyle \int x\operatorname {sh} cx\,dx={\frac {1}{c}}x\operatorname {ch} cx-{\frac {1}{c^{2}}}\operatorname {sh} cx}
∫
x
ch
c
x
d
x
=
1
c
x
sh
c
x
−
1
c
2
ch
c
x
{\displaystyle \int x\operatorname {ch} cx\,dx={\frac {1}{c}}x\operatorname {sh} cx-{\frac {1}{c^{2}}}\operatorname {ch} cx}
∫
th
c
x
d
x
=
1
c
ln
|
ch
c
x
|
{\displaystyle \int \operatorname {th} cx\,dx={\frac {1}{c}}\ln |\operatorname {ch} cx|}
∫
cth
c
x
d
x
=
1
c
ln
|
sh
c
x
|
{\displaystyle \int \operatorname {cth} cx\,dx={\frac {1}{c}}\ln |\operatorname {sh} cx|}
∫
th
2
c
x
d
x
=
x
−
1
c
th
c
x
{\displaystyle \int \operatorname {th} ^{2}cx\,dx=x-{\frac {1}{c}}\operatorname {th} cx}
∫
cth
2
c
x
d
x
=
x
−
1
c
cth
c
x
{\displaystyle \int \operatorname {cth} ^{2}cx\,dx=x-{\frac {1}{c}}\operatorname {cth} cx}
∫
th
n
c
x
d
x
=
−
1
c
(
n
−
1
)
th
n
−
1
c
x
+
∫
th
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int \operatorname {th} ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\operatorname {th} ^{n-1}cx+\int \operatorname {th} ^{n-2}cx\,dx\qquad {\mbox{( }}n\neq 1{\mbox{ )}}}
∫
cth
n
c
x
d
x
=
−
1
c
(
n
−
1
)
cth
n
−
1
c
x
+
∫
cth
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int \operatorname {cth} ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\operatorname {cth} ^{n-1}cx+\int \operatorname {cth} ^{n-2}cx\,dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫
sh
b
x
sh
c
x
d
x
=
1
b
2
−
c
2
(
b
sh
c
x
ch
b
x
−
c
ch
c
x
sh
b
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \operatorname {sh} bx\operatorname {sh} cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\operatorname {sh} cx\operatorname {ch} bx-c\operatorname {ch} cx\operatorname {sh} bx)\qquad {\mbox{( }}b^{2}\neq c^{2}{\mbox{)}}}
∫
ch
b
x
ch
c
x
d
x
=
1
b
2
−
c
2
(
b
sh
b
x
ch
c
x
−
c
sh
c
x
ch
b
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \operatorname {ch} bx\operatorname {ch} cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\operatorname {sh} bx\operatorname {ch} cx-c\operatorname {sh} cx\operatorname {ch} bx)\qquad {\mbox{( }}b^{2}\neq c^{2}{\mbox{)}}}
∫
ch
b
x
sh
c
x
d
x
=
1
b
2
−
c
2
(
b
sh
b
x
sh
c
x
−
c
ch
b
x
ch
c
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \operatorname {ch} bx\operatorname {sh} cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\operatorname {sh} bx\operatorname {sh} cx-c\operatorname {ch} bx\operatorname {ch} cx)\qquad {\mbox{( }}b^{2}\neq c^{2}{\mbox{)}}}
∫
sh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
ch
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
sh
(
a
x
+
b
)
cos
(
c
x
+
d
)
{\displaystyle \int \operatorname {sh} (ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\operatorname {ch} (ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\operatorname {sh} (ax+b)\cos(cx+d)}
∫
sh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
ch
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
sh
(
a
x
+
b
)
sin
(
c
x
+
d
)
{\displaystyle \int \operatorname {sh} (ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\operatorname {ch} (ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\operatorname {sh} (ax+b)\sin(cx+d)}
∫
ch
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
ch
(
a
x
+
b
)
cos
(
c
x
+
d
)
{\displaystyle \int \operatorname {ch} (ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\operatorname {sh} (ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\operatorname {ch} (ax+b)\cos(cx+d)}
∫
ch
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
ch
(
a
x
+
b
)
sin
(
c
x
+
d
)
{\displaystyle \int \operatorname {ch} (ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\operatorname {sh} (ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\operatorname {ch} (ax+b)\sin(cx+d)}
Bu maqola
birorta
turkumga
qoʻshilmagan
. Iltimos, maqolaga aloqador turkumlar qoʻshib yordam qiling.
(Aprel 2024)
Yashirin turkum:
Turkumsiz sahifalar