Foydalanuvchi:Alisher Nishonboyev/qumloq

Vikipediya, ochiq ensiklopediya

Iqlim oʻzgarishini okeanlarga taʼsiri juda koʻp. Asosiy tasirlardan biri okean haroratining oshishidir. Tez-tez sodir boʻladigan dengiz issiqlik oqimlari bunga misol boʻla oladi. Haroratning koʻtarilishi dengiz sathining koʻtarilishiga olib keladi. Boshqa taʼsirlarga: dengiz muzining erishi, okean suvining chuchuklashishi, okean sathi koʻtarilishi va kislorod darajasining pasayishi kiradi. Okean oqimlarining oʻzgarishi, shu jumladan, Atlantika okeanidagi ichki oqimlar aylanishining zaiflashishi yana bir muhim taʼsirdir[1]. Bu oʻzgarishlarning barchasi dengiz ekotizimlariga bevosita taʼsir qilmoqda.[2] Ushbu oʻzgarishlarning asosiy sababi — odamlar sababli vujudga kelgan issiqxona gazlar. ular iqlim oʻzgarishini yuzaga keltirdi. Karbonat angidrid va metan issiqxona gazlariga misoldir. Bu okean isishiga olib keladi, chunki okean iqlim tizimi qoʻshimcha issiqlikning katta qismini oladi[3]. Okean atmosferadagi qoʻshimcha karbonat angidridning bir qismini oʻziga oladi. Bu okeandagi pH qiymatining pasayishiga olib keladi[4]. Olimlarning hisob-kitoblariga koʻra, okean odamlar tomonidan ishlab chiqarilgan CO2 chiqindilarining taxminan 25 foizini oʻzlashtirgan[4].

Okeanning turli qatlamlarida harorat turlicha boʻladi. Havo haroratining koʻtarilishi natijasida okean yuzasidagi harorat ham ortadi[5]. Okean qatlamlaridagi suv yaxshi aralashmaydi, bu esa ustki qatlamdagi suvni ilishiga olib keladi. Bundan tashqari, pastki qatlamdagi sovuq suvni ustki qatlam bilan taʼsrilashuvi kamaytiradi. Vertikal aralashuvning kamayishi okeanning chuqur qismiga issiqlikning yetib borishini qiyinlashtiradi. Shuningdek, issiqlikning katta qismining yutilishi atmosfera va quruqlik hissasiga toʻgʻri keladi. Natijada quruqlikda tropik siklonlar va boshqa boʻronlar koʻpayishi, suvli muhitda esa okeanning yuqori qatlamlarida baliqlar uchun ozuqa moddalari kamayishiga olib keladi. Ushbu oʻzgarishlar okeanning uglerodni ham kamaytiradi[6]. Shu bilan birga, shoʻrlashishdagi tafovut ham ortib bormoqda. Okeanning boshqa joylariga nisbatan shoʻr boʻlgan joylarida shoʻrlashish ortib bormoqda, chuchuk boʻlgan qismida esa chuchuklik ortmoqda[7].

Iliq suv va sovuq suvdagi kislorod miqdori bir xil boʻlmaydi. Natijada okeanlardagi iliq suvdagi kislorod bugʻlanib atmosferaga oʻtadi. Bu suvdagi kislorod miqdorini yanada pasaytiradi[8]. Bunday holat dunyo boʻylab kuzatilmoqda[5].

Ushbu oʻzgarishlar dengiz ekotizimlariga zarar yetkazadi, bu turlarning yoʻq boʻlib ketishini tezlashtirishi, turlarning tarqalishini oʻzgartiradi[9][1]. Bu baliq ovlash va turizmga ham taʼsir qiladi. Suv haroratining koʻtarilishi turli xil okean ekotizimlariga, masalan, marjon riflariga ham zarar etkazadi. Kichik harorat oʻzgarishi ham sezgir marjon riftlarining katta oʻzgarshlar sodir boʻlishiga olib kelishi mumkin . Okeanning kislotalanishi va haroratning oshishi, shuningdek, okean ichidagi turlarning mahsuldorligi va tarqalishiga taʼsir qiladi, baliqchilikka boʻlgan tahdidlarni kuchaytiradi va dengiz ekotizimlarini buzadi. Iqlimni isib borishi tufayli dengiz muzining erishi qutblarga jiddiy taʼsir koʻrsatmoqda. Ushbu iqlim oʻzgarishi asosan okean iqlimiga va okean ekotizimlariga taʼsir etmoqda[1].

Issiqxona gazlari darajasi oshishi bilan bogʻliq oʻzgarishlar[tahrir | manbasini tahrirlash]

Inson faoliyati natijasida sodir boʻlgan global isish tufayli harorat keskin oshib ketmasligi uchun dunyo okeani issiq havoni oʻziga yutadi. Bu esa karoratni keskin oshib ketmasligini taʼminlaydi[10].
Global isish tufayli iqlim tizimining turli qismlaridaharoratning oshishi (2007-yil ma'lumotlari).

Hozirgi vaqtda (2020), atmosferadagi karbonat angidrid (CO2) miqdori qariyb 50% oshdi. Bunday yuqori daraja va tez oʻsish sur’atlari 55 million yil ichida misli koʻrilmagan geologik rekordni yangiladi[4]. Inson tomonidan foydalaniladigan qazilma yoqilgʻi boyliklari, sanoat va yerdan foydalanishining noto'g'riligi buning asosiy sababi boʻldi[4]. Antropologlar uchun okean, asosiy choʻkindi toʻplovchi boʻlib xizmat qilishi haqidagi fikrlar 1950-yillarning oxiridan beri muhokama qilinmoqda[4]. Bir nechta dalillar okean umumiy choʻkindi qismini chorak qismini oʻzlashtirganiga ishora qiladi[4].

2019-yilda kuzatilgan oʻzgarishlar va taʼsirlar haqidagi soʻnggi asosiy izlanishlar quyidagilarni oʻz ichiga oladi:

1970-yildan buyon dunyo okeannining to‘xtovsiz isishi va iqlim o'zgarishi dagi ortiqcha isishga olib keldi. 1993-yildan beri okean harorati ikki baravar ko'paydi. 1982-yildan beri Dengizdagi issiqlik to'lqinlari chastotasi ikki baravar ko'paygan va hozirda ham ortishda davom etmoqda.

Okean haroratining koʻtarilishi[tahrir | manbasini tahrirlash]

Land surface temperatures have increased faster than ocean temperatures as the ocean absorbs about 92% of excess heat generated by climate change.[11] Chart with data from NASA[12] showing how land and sea surface air temperatures have changed vs a pre-industrial baseline.

Iqlim oʻzgarishining okeanlarga taʼsiri ortmoda va bu okean haroratini koʻtarilishiga olib kelmoqda[1]. Dunyo okeanida 2022-yilda eng issiq harorat qayd etildi[13]. Bu harorat 2021-yilgi maksimal darajadan ham oshib ketdi.[13] Okean haroratining koʻtarilib borishi yerning ichki energiyasi va isiqxona gazlari darajasini oshishi bilan bogʻliq[13]. Pre-industrual davrda va 2011—2020-yilar oraligʻida okean yuzasidagi harorat 0,68 dan 1,01 °C ga oshgan[14].

Harorat oshishining asosiy qismi Janubiy okeanga toʻgʻri keladi. Misol uchun, 1950—1980-yillar oraligʻida Janubiy okeanining harorati 0,17°C (0,31°F) ga koʻtarildi. Bu dunyo okeandan deyarli ikki baravar koʻp[15].

Issiqlik darajasi chuqurlikka qarab o'zgaradi. Okeanning yuqori qismi (700 m chuqurlikacha bo'lgan qismi) eng tez isimoqda. Okeanning ming metrdan chuqur bo'lgan qismida harorat har asrda deyarli 0,4°Cga oshmoqda (1981-yildan 2019-yilgacha bo'lgan ma'lumotlar)[5]. Okeanning chuqurroq zonalarida (global miqyosda) 2000 metr chuqurlikda isish har asrda 0,1°C atrofida bo'lgan.[5] Issiqlik Janubiy okeanida farq qiladi, bu yerda eng yuqori isish (har asrda 0,3°C) 4500 m chuqurlikda kuzatilgan[5].

The illustration of temperature changes from 1960 to 2019 across each ocean starting at the Southern Ocean around Antarctica.[16]

Okean isiqlik tarkibi[tahrir | manbasini tahrirlash]

Okean harorati turli hududlarda turlicha bo'ladi. Harorat ekvator yaqinida yuqoriroq, qutblarda esa pastroq bo'ladi. Natijada, okeanning umumiy haroratidagi o'zgarishlar dunyo okeanini o'zgarishiga olib keladi. 1969—1993-yillarni, 1993—2017-yillar bilan solishtirganda, harorat ko'tarilayotgani kuzatilgan[5].

Atrof-muhitga ta'siri[tahrir | manbasini tahrirlash]

Dengiz sathining ko'tarilishi[tahrir | manbasini tahrirlash]

The global average sea level has risen about 250 millimetr (9.8 in) since 1880,[17] increasing the elevation on top of which other types of flooding (high-tide flooding, storm surge) occur.

Ko'pgina qirg'oqbo'yi shaharlar kelgusi o'n yillikda yoki undan keyin suv toshqinlarini boshdan kechiradi[14]. Tabiiy bo'lishi mumkin bo'lgan yoki inson faoliyati tufayli ortishi mumkin bo'lgan mahalliy cho'kishlar, qirg'oq bo'yidagi suv toshqinlarini kuchayadi[18]. 2050-yilga kelib suv toshqinlari qirg'oq bo'yida yashovchi yuz millionlab odamlarga tahdid soladi, asosiy taqdid Janubi-Sharqiy Osiyoda yashovchi aholiga bo'lishi mumkin[18].

Okean oqimlarining ozgarishi[tahrir | manbasini tahrirlash]

Waves on an ocean coast

Okean oqimlari turli kengliklarda quyosh nuri va havo harorati, shuningdek, hukmron shamollar va chuchuk suvning turli xil zichligi tufayli yuzaga keladigan harorat o'zgarishi natijasida yuzaga keladi. Oqimdagi suv harorati ekvatorga yaqin hududlarda ko'tariladi. Keyin, qutblarga qarab harakat qilganda, u yana soviydi. Sovuq havo qutblar yaqinida pasayadi, lekin ekvator tomon harakatlanayotganda yana ko'tariladi. Bu har bir yarim sharda o'rta kenglikdagi shamolni harakatga keltiradigan Hadley sirkulatsiyasini keltirib chiqaradi. Ushbu aylanma harakatlar bilan bog'liq shamol yer yuzasidagi suvlarni havosi sovuqroq bo'lgan yuqori kengliklarga harakatlantiradi[19]. Bu jarayon suvni sovutib, pastki kenglikdagi suvlarni nisbatan juda zichroq bo'lishiga olib keladi, bu esa o'z navbatida okean tubiga cho'kishiga olib keladi, shimolda Shimoliy Atlantika chuqur suvini (ShAChS) va janubda Antarktika tub suvini (ATS) hosil qiladi[20].

Ushbu pasayish va pastki kengliklarda sodir bo'ladigan ko'tarilish, shuningdek, yer usti suvlaridagi shamollarning harakatlantiruvchi kuchi tufayli okean oqimlari dengiz bo'ylab suv aylanishiga ta'sir qiladi. Global isish ta'sir qilganda,okeanlarning chuqur qismini ham isishiga olib keldi[21]. Okeanlar isishi, muzliklar va qutb muzliklari erishi natijasida okeanning suv tarkibi o'zgardi. Yuqori kenglik mintaqalariga muzliklardan erigan toza suv butun okean suvining zichligini pasayishiga olib keladi. Natijada, suv odatdagidan ko'ra balandroq qatlamda turadi[21].

Zamonaviy kuzatuvlar va paleoiqlimni ma'lumotlariga ko'ra, Atlantika meridional sirkuatsiyasi (AMS) pre-industrial davrda zaiflashgan bo'lishi mumkin[14]. 2021-yilda baholangan iqlim o‘zgarishi prognozlari shuni ko‘rsatadiki, AMS 21-asr davomida zaiflashishi mumkin[14]. Uning zaiflashishi global iqlimga sezilarli ta'sir ko'rsatishi mumkin, ayniqsa, Atlantika okeaning shimoliy qismida[1].

Okean oqimlaridagi har qanday o'zgarishlar okeanning karbonat angidridni o'zlashtirish qobiliyatiga (suv harorati ta'sir qiladi) hamda okean unumdorligiga ta'sir qiladi, chunki oqimlar ozuqa moddalarini ya'ni fitaplanktonlarni tashiydi. AMS chuqur okean aylanishi sekin bo'ladi, ya'ni (butun okeanni aylanib chiqish uchun yuzlab yoki minglab yillar kerak bo'ladi), u iqlim o'zgarishiga sekin ta'sir qiladi[22].

Tabaqalanishni kuchayishi[tahrir | manbasini tahrirlash]

Drivers of hypoxia and ocean acidification intensification in upwelling shelf systems. Equatorward winds drive the upwelling of low dissolved oxygen (DO), high nutrient, and high dissolved inorganic carbon (DIC) water from above the oxygen minimum zone. Cross-shelf gradients in productivity and bottom water residence times drive the strength of DO (DIC) decrease (increase) as water transits across a productive continental shelf.[23][24]

Changes in ocean stratification are significant because they can influence productivity and oxygen levels. The separation of water into layers based on density is known as stratification. Stratification by layers occurs in all ocean basins. The stratified layers limit how much vertical water mixing takes place, reducing the exchange of heat, carbon, oxygen and particles between the upper ocean and the interior.[25] Since 1970, there has been an increase in stratification in the upper ocean due to global warming and, in some areas, salinity changes.[14] The salinity changes are caused by evaporation in tropical waters, which results in higher salinity and density levels. Meanwhile, melting ice can cause a decrease in salinity at higher latitudes.[14]

Temperature, salinity and pressure all influence water density. As surface waters are often warmer than deep waters, they are less dense, resulting in stratification.[25] This stratification is crucial not just in the production of the Atlantic Meridional Overturning Circulation, which has worldwide weather and climate ramifications, but it is also significant because stratification controls the movement of nutrients from deep water to the surface. This increases ocean productivity and is associated with the compensatory downward flow of water that carries oxygen from the atmosphere and surface waters into the deep sea.[22]

Reduced oxygen levels[tahrir | manbasini tahrirlash]

Global map of low and declining oxygen levels in the open ocean and coastal waters. The map indicates coastal sites where anthropogenic nutrients have resulted in oxygen declines to less than 2 mg L-1 (red dots), as well as ocean oxygen minimum zones at 300 metres (blue shaded regions).[26]

Climate change has an impact on ocean oxygen, both in coastal areas and in the open ocean.[26]

The open ocean naturally has some areas of low oxygen, known as oxygen minimum zones. These areas are isolated from the atmospheric oxygen by sluggish ocean circulation. At the same time, oxygen is consumed when sinking organic matter from surface waters is broken down. These low oxygen ocean areas are expanding as a result of ocean warming which both reduces water circulation and also reduces the oxygen content of that water, while the solubility of oxygen declines as the temperature rises.[27]

Overall ocean oxygen concentrations are estimated to have declined 2% over 50 years from the 1960s.[27] The nature of the ocean circulation means that in general these low oxygen regions are more pronounced in the Pacific Ocean. Low oxygen represents a stress for almost all marine animals. Very low oxygen levels create regions with much reduced fauna. It is predicted that these low oxygen zones will expand in future due to climate change, and this represents a serious threat to marine life in these oxygen minimum zones.[1]  

The second area of concern relates to coastal waters where increasing nutrient supply from rivers to coastal areas leads to increasing production and sinking organic matter which in some coastal regions leads to extreme oxygen depletion, sometimes referred to as dead zones.[28] These dead zones are expanding driven particularly by increasing nutrient inputs, but also compounded by increasing ocean stratification driven by climate change.[1]

Oceans turning green[tahrir | manbasini tahrirlash]

Satellite image analysis reveals that the oceans have been gradually turning green from blue as climate breakdown continues. The color change has been detected for a majority of the word’s ocean surfaces and may be due to changing plankton populations caused by climate change.[29][30]

Changes to Earth’s weather system and wind patterns[tahrir | manbasini tahrirlash]

Andoza:Further Climate change and the associated warming of the ocean will lead to widespread changes to the Earth’s climate and weather system including increased tropical cyclone and monsoon intensities and weather extremes with some areas becoming wetter and others drier.[14] Changing wind patterns are predicted to increase wave heights in some areas.[31][14]:1310

Intensifying tropical cyclones[tahrir | manbasini tahrirlash]

Human-induced climate change „continues to warm the oceans which provide the memory of past accumulated effects“.[32] The result is a higher ocean heat content and higher sea surface temperatures. In turn, this „invigorates tropical cyclones to make them more intense, bigger, longer lasting and greatly increases their flooding rains“.[32] One example is Hurricane Harvey in 2017.[32]

Page 'Tropical cyclones and climate change' not found

Salinity changes[tahrir | manbasini tahrirlash]

Andoza:Further

Due to global warming and increased glacier melt, thermohaline circulation patterns may be altered by increasing amounts of freshwater released into oceans and, therefore, changing ocean salinity. Thermohaline circulation is responsible for bringing up cold, nutrient-rich water from the depths of the ocean, a process known as upwelling.[33]

Seawater consists of fresh water and salt, and the concentration of salt in seawater is called salinity. Salt does not evaporate, thus the precipitation and evaporation of freshwater influences salinity strongly. Changes in the water cycle are therefore strongly visible in surface salinity measurements, which has been known since the 1930s.[7][34]

The long term observation records show a clear trend: the global salinity patterns are amplifying in this period.[35][36] This means that the high saline regions have become more saline, and regions of low salinity have become less saline. The regions of high salinity are dominated by evaporation, and the increase in salinity shows that evaporation is increasing even more. The same goes for regions of low salinity that are becoming less saline, which indicates that precipitation is becoming more intensified.[37][5]

Sea ice decline and changes[tahrir | manbasini tahrirlash]

Decline in arctic sea ice extent (area) from 1979 to 2022

Sea ice decline occurs more in the Arctic than in Antarctica, where it is more a matter of changing sea ice conditions.

Time scales[tahrir | manbasini tahrirlash]

Many ocean-related elements of the climate system respond slowly to warming. For instance, acidification of the deep ocean will continue for millennia, and the same is true for the increase in ocean heat content.[38]:43 Similarly, sea level rise will continue for centuries or even millennia even if greenhouse gas emissions are brought to zero, due to the slow response of ice sheets to warming and the continued uptake of heat by the oceans, which expand when warmed.[38]:77

Impacts on marine life[tahrir | manbasini tahrirlash]

Examples of projected impacts and vulnerabilities for fisheries associated with climate change

Climate change will not only alter the overall productivity of the ocean, but it will also alter the structure of the oceanʼs biomass community. In general, species are expected to move towards the poles as a result. Some species have already moved hundreds of kilometres since the 1950s. Phytoplankton bloom timings are also already altering moving earlier in the season particularly in polar waters. These trends are projected to intensify with further progress of climate change.[14]Andoza:Failed verification

There are additional potentially important impacts of climate change on seabirds, fish and mammals in polar regions where populations with highly specialised survival strategies will need to adapt to major changes in habitat and food supply. In addition, sea ice often plays a key role in their life cycle. In the Arctic for example, providing haul-out sites for seals and walruses, and for hunting routes for polar bears. In the Antarctic, sea bird and penguin distributions are also believed to be very sensitive to climate change, although the impacts to date vary in different regions.[14]Andoza:Failed verification

Due to fall out from the 2019-2021 Pacific Northwest marine heatwave,[39] Bering Sea snow crab populations declined 84% between 2018 and 2022, a loss of 9.8 billion crabs.[40]

Calcifying organisms and ocean acidification[tahrir | manbasini tahrirlash]

Page 'Ocean_acidification#Complexity of research findings' not found

Coral reefs[tahrir | manbasini tahrirlash]

Andoza:Further

Bleached Staghorn coral in the Great Barrier Reef.

While some mobile marine species can migrate in response to climate change, others such as corals find this much more difficult. A coral reef is an underwater ecosystem characterized by reef-building corals. Reefs are formed by colonies of coral polyps held together by calcium carbonate.[41] Coral reefs are important centres of biodiversity and vital to millions of people who rely on them for coastal protection, food and for sustaining tourism in many regions.[42]

Warm water corals are clearly in decline, with losses of 50% over the last 30-50 years due to multiple threats from ocean warming, ocean acidification, pollution and physical damage from activities such as fishing. These pressures are expected to intensify.[42]

The warming ocean surface waters can lead to bleaching of the corals which can cause serious damage and/or coral death. The IPCC Sixth Assessment Report in 2022 found that: „Since the early 1980s, the frequency and severity of mass coral bleaching events have increased sharply worldwide“.[43]:416 Marine heatwaves have caused coral reef mass mortality.[43]:381 It is expected that many coral reefs will suffer irreversible changes and loss due to marine heatwaves with global temperatures increasing by more than 1.5 °C.[43]:382

Coral bleaching occurs when thermal stress from a warming ocean results in the expulsion of the symbiotic algae that resides within coral tissues. These symbiotic algae are the reason for the bright, vibrant colors of coral reefs.[44] A 1-2°C sustained increase in seawater temperatures is sufficient for bleaching to occur, which turns corals white.[45] If a coral is bleached for a prolonged period of time, death may result. In the Great Barrier Reef, before 1998 there were no such events. The first event happened in 1998 and after that, they began to occur more frequently. Between 2016 and 2020 there were three of them.[46]

Apart from coral bleaching, the reducing pH value in oceans is also a problem for coral reefs because ocean acidification reduces coralline algal biodiversity.[47] The physiology of coralline algal calcification determines how the algae will respond to ocean acidification.[47]

Page 'Ocean acidification#Corals' not found

Ocean productivity[tahrir | manbasini tahrirlash]

Andoza:Further

The process of photosynthesis in the surface ocean releases oxygen and consumes carbon dioxide. This photosynthesis in the ocean is dominated by phytoplankton — microscopic free-floating algae. After the plants grow, bacterial decomposition of the organic matter formed by photosynthesis in the ocean consumes oxygen and releases carbon dioxide. The sinking and bacterial decomposition of some organic matter in deep ocean water, at depths where the waters are out of contact with the atmosphere, leads to a reduction in oxygen concentrations and increase in carbon dioxide, carbonate and bicarbonate.[22] This cycling of carbon dioxide in oceans is an important part of the global carbon cycle.

The photosynthesis in surface waters consumes nutrients (e.g. nitrogen and phosphorus) and transfers these nutrients to deep water as the organic matter produced by photosynthesis sinks upon the death of the organisms. Productivity in surface waters therefore depends in part on the transfer of nutrients from deep water back to the surface by ocean mixing and currents. The increasing stratification of the oceans due to climate change therefore acts generally to reduce ocean productivity. However, in some areas, such as previously ice covered regions, productivity may increase. This trend is already observable and is projected to continue under current projected climate change.[14]Andoza:Failed verification In the Indian Ocean for example, productivity is estimated to have declined over the past sixty years due to climate warming and is projected to continue.[48]

Ocean productivity under a very high emission scenario (RCP8.5) is very likely to drop by 4-11% by 2100.[5]:452 The decline will show regional variations. For example, the tropical ocean NPP will decline more: by 7-16% for the same emissions scenario.[5]:452 Less organic matter will likely sink from the upper oceans into deeper ocean layers due to increased ocean stratification and a reduction in nutrient supply.[5]:452 The reduction in ocean productivity is due to the „combined effects of warming, stratification, light, nutrients and predation“.[5]:452

Effects on fisheries[tahrir | manbasini tahrirlash]

Page 'Effects of climate change on fisheries' not found

Harmful algal blooms[tahrir | manbasini tahrirlash]

Andoza:Further

Although the drivers of harmful algal blooms (HABs) are poorly understood, they appear to have increased in range and frequency in coastal areas since the 1980s.[1]:16 This is the result of human induced factors such as increased nutrient inputs (nutrient pollution) and climate change (in particular the warming of water temperatures).[1]:16 The parameters that affect the formation of HABs are ocean warming, marine heatwaves, oxygen loss, eutrophication and water pollution.[49]:582 These increases in HABs are of concern because of the impact of their occurrence on local food security, tourism and the economy.[1]:16

It is however also possible that the perceived increase in HABs globally is simply due to more severe bloom impacts and better monitoring and not due to climate change.[43]:463

Marine mammals[tahrir | manbasini tahrirlash]

Some effects on marine mammals, especially those in the Arctic, are very direct such as loss of habitat, temperature stress, and exposure to severe weather. Other effects are more indirect, such as changes in host pathogen associations, changes in body condition because of predator-prey interaction, changes in exposure to toxins and Andoza:CO2 emissions, and increased human interactions.[50] Despite the large potential impacts of ocean warming on marine mammals, the global vulnerability of marine mammals to global warming is still poorly understood.[51]

Marine mammals have evolved to live in oceans, but climate change is affecting their natural habitat.[52][53][54][55] Some species may not adapt fast enough, which might lead to their extinction.[56]

It has been generally assumed that the Arctic marine mammals were the most vulnerable in the face of climate change given the substantial observed and projected decline in Arctic sea ice. However, research has shown that the North Pacific Ocean, the Greenland Sea and the Barents Sea host the species that are most vulnerable to global warming.[51] The North Pacific has already been identified as a hotspot for human threats for marine mammals[57] and is now also a hotspot for vulnerability to global warming. Marine mammals in this region will face double jeopardy from both human activities (e.g., marine traffic, pollution and offshore oil and gas development) and global warming, with potential additive or synergetic effects. As a result, these ecosystems face irreversible consequences for marine ecosystem functioning.[51]

Marine organisms usually tend to encounter relatively stable temperatures compared to terrestrial species and thus are likely to be more sensitive to temperature change than terrestrial organisms.[58] Therefore, the ocean warming will lead to the migration of increased species, as endangered species look for a more suitable habitat. If sea temperatures continue to rise, then some fauna may move to cooler water and some range-edge species may disappear from regional waters or experience a reduced global range.[58] Change in the abundance of some species will alter the food resources available to marine mammals, which then results in marine mammals' biogeographic shifts. Furthermore, if a species is unable to successfully migrate to a suitable environment, it will be at risk of extinction if it cannot adapt to rising temperatures of the ocean.

Arctic sea ice decline leads to loss of the sea ice habitat, elevations of water and air temperature, and increased occurrence of severe weather. The loss of sea ice habitat will reduce the abundance of seal prey for marine mammals, particularly polar bears.[59] Sea ice changes may also have indirect effects on animal heath due to changes in the transmission of pathogens, impacts on animals' body condition due to shifts in the prey-based food web, and increased exposure to toxicants as a result of increased human habitation in the Arctic habitat.[60]

Sea level rise is also important when assessing the impacts of global warming on marine mammals, since it affects coastal environments that marine mammal species rely on.[61]

Polar bears[tahrir | manbasini tahrirlash]

A polar bear waiting in the Fall for the sea ice to form.
Page 'Polar bear conservation#Climate change' not found

Seals[tahrir | manbasini tahrirlash]

Andoza:Further

Harp seal mother nursing pup on sea ice

Seals are another marine mammal that are susceptible to climate change.[56] Much like polar bears, some seal species have evolved to rely on sea ice. They use the ice platforms for breeding and raising young seal pups. In 2010 and 2011, sea ice in the Northwest Atlantic was at or near an all-time low and harp seals as well as ringed seals that bred on thin ice saw increased death rates.[62][63] Antarctic fur seals in South Georgia in the South Atlantic Ocean saw extreme reductions over a 20-year study, during which scientists measured increased sea surface temperature anomalies.[64]

Dolphins[tahrir | manbasini tahrirlash]

Dolphins are marine mammals with broad geographic extent, making them susceptible to climate change in various ways. The most common effect of climate change on dolphins is the increasing water temperatures across the globe.[65] This has caused a large variety of dolphin species to experience range shifts, in which the species move from their typical geographic region to cooler waters.[66][67] Another side effect of increasing water temperatures is the increase in harmful algae blooms, which has caused a mass die-off of bottlenose dolphins.[65]

Climate change has had a significant impact on various dolphin species. For example: In the Mediterranean, increased sea surface temperatures, salinity, upwelling intensity, and sea levels have led to a reduction in prey resources, causing a steep decline in the short-beaked common dolphin subpopulation in the Mediterranean, which was classified as endangered in 2003.[68] At the Shark Bay World Heritage Area in Western Australia, the local population of the Indo-Pacific bottlenose dolphin had a significant decline following a marine heatwave in 2011.[69] River dolphins are highly affected by climate change as high evaporation rates, increased water temperatures, decreased precipitation, and increased acidification occur.[66][70]

North Atlantic right whales[tahrir | manbasini tahrirlash]

Page 'North Atlantic right whales#Climate change' not found

Potential feedback effects[tahrir | manbasini tahrirlash]

Methane release from methane clathrate[tahrir | manbasini tahrirlash]

Rising ocean temperatures also have the potential to impact methane clathrate reservoirs located under the ocean floor sediments. These trap large amounts of the greenhouse gas methane, which ocean warming has the potential to release. However, it is currently considered unlikely that gas clathrates (mostly methane) in subsea clathrates will lead to a „detectable departure from the emissions trajectory during this century“.[38]:107

In 2004 the global inventory of ocean methane clathrates was estimated to occupy between one and five million cubic kilometres.[71]

See also[tahrir | manbasini tahrirlash]

References[tahrir | manbasini tahrirlash]

  1. 1,00 1,01 1,02 1,03 1,04 1,05 1,06 1,07 1,08 1,09 „Summary for Policymakers“,The Ocean and Cryosphere in a Changing Climate, 2019 — 3–36 bet. DOI:10.1017/9781009157964.001. ISBN 978-1-00-915796-4. 
  2. Worm, Boris; Barbier, Edward B.; Beaumont, Nicola; Duffy, J. Emmett; Folke, Carl; Halpern, Benjamin S.; Jackson, Jeremy B. C.; Lotze, Heike K. et al. (2006-11-03). "Impacts of Biodiversity Loss on Ocean Ecosystem Services" (en). Science 314 (5800): 787–790. doi:10.1126/science.1132294. ISSN 0036-8075. https://www.science.org/doi/10.1126/science.1132294. 
  3. Cheng, Lijing; Abraham, John; Hausfather, Zeke; Trenberth, Kevin E. (11 January 2019). "How fast are the oceans warming?". Science 363 (6423): 128–129. doi:10.1126/science.aav7619. PMID 30630919. 
  4. 4,0 4,1 4,2 4,3 4,4 4,5 Doney, Scott C.; Busch, D. Shallin; Cooley, Sarah R.; Kroeker, Kristy J. (2020-10-17). "The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities" (en). Annual Review of Environment and Resources 45 (1): 83–112. doi:10.1146/annurev-environ-012320-083019.  Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License (Wayback Machine saytida 2017-10-16 sanasida arxivlangan)
  5. 5,00 5,01 5,02 5,03 5,04 5,05 5,06 5,07 5,08 5,09 5,10 Bindoff, N. L., W. W. L. Cheung, J. G. Kairo, J. Arístegui, V. A. Guinder, R. Hallberg, N. Hilmi, N. Jiao, M. S. Karim, L. Levin, S. OʻDonoghue, S. R. Purca Cuicapusa, B. Rinkevich, T. Suga, A. Tagliabue, and P. Williamson, 2019: Chapter 5: Changing Ocean, Marine Ecosystems, and Dependent Communities (Wayback Machine saytida 2019-12-20 sanasida arxivlangan). In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Wayback Machine saytida 2021-07-12 sanasida arxivlangan) [H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. M. Weyer (eds.)]. In press.
  6. Freedman, Andrew. „Mixing of the planet's ocean waters is slowing down, speeding up global warming, study finds“ (2020-yil 29-sentyabr). 2020-yil 15-oktyabrda asl nusxadan arxivlangan. Qaraldi: 2020-yil 12-oktyabr.
  7. 7,0 7,1 Cheng, Lijing; Trenberth, Kevin E.; Gruber, Nicolas; Abraham, John P.; Fasullo, John T.; Li, Guancheng; Mann, Michael E.; Zhao, Xuanming et al. (2020). "Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle". Journal of Climate 33 (23): 10357–10381. doi:10.1175/jcli-d-20-0366.1. 
  8. Chester, R.; Jickells, Tim „Chapter 9: Nutrients oxygen organic carbon and the carbon cycle in seawater“,. Marine geochemistry, 3rd, Chichester, West Sussex, UK: Wiley/Blackwell, 2012 — 182–183 bet. ISBN 978-1-118-34909-0. OCLC 781078031. 
  9. Briand F., ed (2013). "Marine Extinctions: Patterns and Processes - an overview." (en). CIESM Workshop Monographs 45: 5–19. https://www.researchgate.net/publication/271767063. 
  10. Top 700 meters: Lindsey, Rebecca; Dahlman, Luann „Climate Change: Ocean Heat Content“. climate.gov. National Oceanic and Atmospheric Administration (NOAA) (2023-yil 6-sentyabr). 2023-yil 29-oktyabrda asl nusxadan arxivlangan. Top 2000 meters: „Ocean Warming / Latest Measurement: December 2022 / 345 (± 2) zettajoules since 1955“. NASA.gov. National Aeronautics and Space Administration. 2023-yil 20-oktyabrda asl nusxadan arxivlangan.
  11. „The Oceans Are Heating Up Faster Than Expected“. scientific american. 2020-yil 3-martda asl nusxadan arxivlangan. Qaraldi: 2020-yil 3-mart.
  12. „Global Annual Mean Surface Air Temperature Change“. NASA. 2020-yil 16-aprelda asl nusxadan arxivlangan. Qaraldi: 2020-yil 23-fevral.
  13. 13,0 13,1 13,2 Cheng, Lijing; Abraham, John; Trenberth, Kevin E.; Fasullo, John; Boyer, Tim; Mann, Michael E.; Zhu, Jiang; Wang, Fan et al. (2023). "Another Year of Record Heat for the Oceans" (en). Advances in Atmospheric Sciences 40 (6): 963–974. doi:10.1007/s00376-023-2385-2. ISSN 0256-1530. PMID 36643611. PMC 9832248. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=9832248.  Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  14. 14,00 14,01 14,02 14,03 14,04 14,05 14,06 14,07 14,08 14,09 14,10 Fox-Kemper, B., H. T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S. S. Drijfhout, T. L. Edwards, N. R. Golledge, M. Hemer, R. E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I. S. Nurhati, L. Ruiz, J.-B. Sallée, A. B. A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change (Wayback Machine saytida 2022-10-24 sanasida arxivlangan). In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Wayback Machine saytida 2021-08-09 sanasida arxivlangan) [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211-1362
  15. Gille, Sarah T. (2002-02-15). "Warming of the Southern Ocean Since the 1950s". Science 295 (5558): 1275–1277. doi:10.1126/science.1065863. PMID 11847337. 
  16. Cheng, Lijing; Abraham, John; Zhu, Jiang; Trenberth, Kevin E.; Fasullo, John; Boyer, Tim; Locarnini, Ricardo; Zhang, Bin et al. (February 2020). "Record-Setting Ocean Warmth Continued in 2019" (en). Advances in Atmospheric Sciences 37 (2): 137–142. doi:10.1007/s00376-020-9283-7. 
  17. „Climate Change Indicators: Sea Level / Figure 1. Absolute Sea Level Change“. EPA.gov. U.S. Environmental Protection Agency (EPA) (2022-yil iyul). — „Data sources: CSIRO, 2017. NOAA, 2022.“. 2023-yil 4-sentyabrda asl nusxadan arxivlangan.
  18. 18,0 18,1 Nicholls, Robert J.; Lincke, Daniel; Hinkel, Jochen; Brown, Sally; Vafeidis, Athanasios T.; Meyssignac, Benoit; Hanson, Susan E.; Merkens, Jan-Ludolf et al. (2021). "A global analysis of subsidence, relative sea-level change and coastal flood exposure" (en). Nature Climate Change 11 (4): 338–342. doi:10.1038/s41558-021-00993-z. https://zenodo.org/record/4621313. Qaraldi: 2022-11-21. Foydalanuvchi Alisher Nishonboyev/qumloq]]
  19. Trujillo, Alan P.. Essentials of oceanography, Harold V. Thurman, 11th, Boston: Pearson, 2014. ISBN 978-0-321-81405-0. OCLC 815043823. 
  20. Talley, L. (2000). Sio 210 talley topic 5: North Atlantic circulation and water masses. thermohaline forcing (Wayback Machine saytida 2015-01-15 sanasida arxivlangan).
  21. 21,0 21,1 Trenberth, K; Caron, J (2001). "Estimates of Meridional Atmosphere and Ocean Heat Transports". Journal of Climate 14 (16): 3433–43. doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2. https://zenodo.org/record/1234671. Qaraldi: 2022-10-28. Foydalanuvchi Alisher Nishonboyev/qumloq]]
  22. 22,0 22,1 22,2 Chester, R.; Jickells, Tim „Chapter 9: Nutrients oxygen organic carbon and the carbon cycle in seawater“,. Marine geochemistry, 3rd, Chichester, West Sussex, UK: Wiley/Blackwell, 2012. ISBN 978-1-118-34909-0. OCLC 781078031. 
  23. Chan, Francis; Barth, John; Kroeker, Kristy; Lubchenco, Jane; Menge, Bruce (1 September 2019). "The Dynamics and Impact of Ocean Acidification and Hypoxia: Insights from Sustained Investigations in the Northern California Current Large Marine Ecosystem". Oceanography 32 (3): 62–71. doi:10.5670/oceanog.2019.312.  Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License (Wayback Machine saytida 2017-10-16 sanasida arxivlangan).
  24. Gewin, Virginia (August 2010). "Oceanography: Dead in the water". Nature 466 (7308): 812–814. doi:10.1038/466812a. PMID 20703282. 
  25. 25,0 25,1 Li, Guancheng; Cheng, Lijing; Zhu, Jiang; Trenberth, Kevin E.; Mann, Michael E.; Abraham, John P. (December 2020). "Increasing ocean stratification over the past half-century". Nature Climate Change 10 (12): 1116–1123. doi:10.1038/s41558-020-00918-2. https://scholarsphere.psu.edu/resources/b5e27d36-d40c-428c-bfc7-32646be12f5c. Qaraldi: 2022-10-21. Foydalanuvchi Alisher Nishonboyev/qumloq]]
  26. 26,0 26,1 Breitburg, Denise; Levin, Lisa A.; Oschlies, Andreas; Grégoire, Marilaure; Chavez, Francisco P.; Conley, Daniel J.; Garçon, Véronique; Gilbert, Denis et al. (5 January 2018). "Declining oxygen in the global ocean and coastal waters". Science 359 (6371): eaam7240. doi:10.1126/science.aam7240. PMID 29301986. 
  27. 27,0 27,1 Oschlies, Andreas; Brandt, Peter; Stramma, Lothar; Schmidtko, Sunke (2018). "Drivers and mechanisms of ocean deoxygenation" (en). Nature Geoscience 11 (7): 467–473. doi:10.1038/s41561-018-0152-2. 
  28. Breitburg, Denise; Levin, Lisa A.; Oschlies, Andreas; Grégoire, Marilaure; Chavez, Francisco P.; Conley, Daniel J.; Garçon, Véronique; Gilbert, Denis et al. (2018). "Declining oxygen in the global ocean and coastal waters" (en). Science 359 (6371): eaam7240. doi:10.1126/science.aam7240. PMID 29301986. 
  29. The Guardian, 2023 July 12 „World’s Oceans Changing Colour Due to Climate Breakdown“
  30. Cael, B. B., Bisson, K., Boss, E. et al. „Global climate-change trends detected in indicators of ocean ecology“ Nature (2023)
  31. Odériz, I.; Silva, R.; Mortlock, T.R.; Mori, N.; Shimura, T.; Webb, A.; Padilla‐Hernández, R.; Villers, S. (2021-06-16). "Natural Variability and Warming Signals in Global Ocean Wave Climates". Geophysical Research Letters 48 (11). doi:10.1029/2021GL093622. 
  32. 32,0 32,1 32,2 Trenberth, Kevin E.; Cheng, Lijing; Jacobs, Peter; Zhang, Yongxin; Fasullo, John (2018). "Hurricane Harvey Links to Ocean Heat Content and Climate Change Adaptation" (en). Earth's Future 6 (5): 730–744. doi:10.1029/2018EF000825. 
  33. Haldar, Ishita. Global Warming: The Causes and Consequences (en). Readworthy, 30 April 2018. ISBN 978-81-935345-7-1. 
  34. Wüst, Georg (1936), Louis, Herbert; Panzer, Wolfgang (muh.), „Oberflächensalzgehalt, Verdunstung und Niederschlag auf dem Weltmeere“, Länderkundliche Forschung : Festschrift zur Vollendung des sechzigsten Lebensjahres Norbert Krebs, Stuttgart, Germany: Engelhorn, 347–359-bet, 2021-06-07da asl nusxadan arxivlandi, qaraldi: 2021-06-07
  35. Euzen, Agathe. The ocean revealed.. Paris: CNRS Éditions, 2017. ISBN 978-2-271-11907-0. 
  36. Durack, Paul J.; Wijffels, Susan E. (2010-08-15). "Fifty-Year Trends in Global Ocean Salinities and Their Relationship to Broad-Scale Warming" (EN). Journal of Climate 23 (16): 4342–4362. doi:10.1175/2010JCLI3377.1. 
  37. „Marine pollution, explained“ (en). National Geographic (2019-yil 2-avgust). 2020-yil 14-iyunda asl nusxadan arxivlangan. Qaraldi: 2020-yil 7-aprel.
  38. 38,0 38,1 38,2 Arias, P. A., N. Bellouin, E. Coppola, R. G. Jones, G. Krinner, J. Marotzke, V. Naik, M. D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P. W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R. P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J. G. Canadell, C. Cassou, A. Cherchi, W. Collins, W. D. Collins, S. L. Connors, S. Corti, F. Cruz, F. J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F. J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J. S. Fuglestvedt, J. C. Fyfe, N. P. Gillett, L. Goldfarb, I. Gorodetskaya, J. M. Gutierrez, R. Hamdi, E. Hawkins, H. T. Hewitt, P. Hope, A. S. Islam, C. Jones, D. S. Kaufman, R. E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, et al., 2021: Technical Summary (Wayback Machine saytida 2022-07-21 sanasida arxivlangan). In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Wayback Machine saytida 2021-08-09 sanasida arxivlangan) [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 33−144.
  39. Barkhordarian, Armineh; Nielsen, David Marcolino; Baehr, Johanna (2022-06-21). "Recent marine heatwaves in the North Pacific warming pool can be attributed to rising atmospheric levels of greenhouse gases" (en). Communications Earth & Environment 3 (1): 1–12. doi:10.1038/s43247-022-00461-2. ISSN 2662-4435. https://www.nature.com/articles/s43247-022-00461-2. 
  40. Bryce, Emma. „Billions gone: what's behind the disappearance of Alaska snow crabs?“ (en-GB). The Guardian (2022-yil 20-oktyabr). 2023-yil 25-iyulda asl nusxadan arxivlangan. Qaraldi: 2023-yil 30-oktyabr.
  41. „How Reefs Are Made“. Coral Reef Alliance (2021). 2021-yil 30-oktyabrda asl nusxadan arxivlangan. Qaraldi: 2022-yil 19-aprel.
  42. 42,0 42,1 Hoegh-Guldberg, Ove; Poloczanska, Elvira S.; Skirving, William; Dove, Sophie (2017). "Coral Reef Ecosystems under Climate Change and Ocean Acidification". Frontiers in Marine Science 4: 158. doi:10.3389/fmars.2017.00158. 
  43. 43,0 43,1 43,2 43,3 Cooley, S., D. Schoeman, L. Bopp, P. Boyd, S. Donner, D. Y. Ghebrehiwet, S.-I. Ito, W. Kiessling, P. Martinetto, E. Ojea, M.-F. Racault, B. Rost, and M. Skern-Mauritzen, 2022: Chapter 3: Oceans and Coastal Ecosystems and Their Services (Wayback Machine saytida 2022-10-21 sanasida arxivlangan). In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Wayback Machine saytida 2022-02-28 sanasida arxivlangan) [H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 379-550
  44. Hoegh-Guldberg, O.; Mumby, P. J.; Hooten, A. J.; Steneck, R. S.; Greenfield, P.; Gomez, E.; Harvell, C. D.; Sale, P. F. et al. (14 December 2007). "Coral Reefs Under Rapid Climate Change and Ocean Acidification". Science 318 (5857): 1737–1742. doi:10.1126/science.1152509. PMID 18079392. 
  45. „Coral reefs as world heritage“,International Environmental Law and the Conservation of Coral Reefs, 2011 — 187–223 bet. DOI:10.4324/9780203816882-16. ISBN 978-0-203-81688-2. 
  46. Davidson, Jordan. „Great Barrier Reef Has Third Major Bleaching Event in Five Years“. Ecowatch (2020-yil 25-mart). 2020-yil 26-martda asl nusxadan arxivlangan. Qaraldi: 2020-yil 27-mart.
  47. 47,0 47,1 Cornwall, Christopher E.; Harvey, Ben P.; Comeau, Steeve; Cornwall, Daniel L.; Hall‐Spencer, Jason M.; Peña, Viviana; Wada, Shigeki; Porzio, Lucia (January 2022). "Understanding coralline algal responses to ocean acidification: Meta‐analysis and synthesis". Global Change Biology 28 (2): 362–374. doi:10.1111/gcb.15899. PMID 34689395. 
  48. Roxy, Mathew Koll; Modi, Aditi; Murtugudde, Raghu; Valsala, Vinu; Panickal, Swapna; Prasanna Kumar, S.; Ravichandran, M.; Vichi, Marcello et al. (2016). "A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean". Geophysical Research Letters 43 (2): 826–833. doi:10.1002/2015GL066979. 
  49. Caretta, M. A., A. Mukherji, M. Arfanuzzaman, R. A. Betts, A. Gelfan, Y. Hirabayashi, T. K. Lissner, J. Liu, E. Lopez Gunn, R. Morgan, S. Mwanga, and S. Supratid, 2022: Chapter 4: Water (Wayback Machine saytida 2023-03-29 sanasida arxivlangan). In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Wayback Machine saytida 2022-02-28 sanasida arxivlangan) [H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 551-712
  50. Burek, Kathy A.; Gulland, Frances M. D.; O'Hara, Todd M. (2008). "Effects of Climate Change on Arctic Marine Mammal Health". Ecological Applications 18 (2): S126–S134. doi:10.1890/06-0553.1. PMID 18494366. 
  51. 51,0 51,1 51,2 Albouy, Camille; Delattre, Valentine; Donati, Giulia; Frölicher, Thomas L.; Albouy-Boyer, Severine; Rufino, Marta; Pellissier, Loïc; Mouillot, David et al. (December 2020). "Global vulnerability of marine mammals to global warming" (en). Scientific Reports 10 (1): 548. doi:10.1038/s41598-019-57280-3. PMID 31953496. PMC 6969058. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=6969058. 
  52. Harwood, John (1 August 2001). "Marine mammals and their environment in the twenty-first century". Journal of Mammalogy 82 (3): 630–640. doi:10.1644/1545-1542(2001)082<0630:MMATEI>2.0.CO;2. 
  53. Simmonds, Mark P.; Isaac, Stephen J. (5 March 2007). "The impacts of climate change on marine mammals: early signs of significant problems". Oryx 41 (1): 19–26. doi:10.1017/s0030605307001524. 
  54. Tynan, Cynthia T.; DeMaster, Douglas P. (1997). "Observations and Predictions of Arctic Climatic Change: Potential Effects on Marine Mammals". Arctic 50 (4): 308–322. doi:10.14430/arctic1113. http://pubs.aina.ucalgary.ca/arctic/Arctic50-4-308.pdf. Qaraldi: 2022-04-01. "Animals have a high risk of mortality." Foydalanuvchi Alisher Nishonboyev/qumloq]]
  55. Learmonth, JA; Macleod, CD; Santos, MB; Pierce, GJ; Crick, HQP „Potential effects of climate change on marine mammals“,. Oceanography and marine biology an annual review. Volume 44. Boca Raton: Taylor & Francis, 2006 — 431–464 bet. ISBN 978-1-4200-0639-1. 
  56. 56,0 56,1 Laidre, Kristin L.; Stirling, Ian; Lowry, Lloyd F.; Wiig, Øystein; Heide-Jørgensen, Mads Peter; Ferguson, Steven H. (January 1, 2008). "Quantifying the Sensitivity of Arctic Marine Mammals to Climate-Induced Habitat Change". Ecological Applications 18 (2): S97–S125. doi:10.1890/06-0546.1. PMID 18494365. 
  57. Avila, Isabel C.; Kaschner, Kristin; Dormann, Carsten F. (May 2018). "Current global risks to marine mammals: Taking stock of the threats". Biological Conservation 221: 44–58. doi:10.1016/j.biocon.2018.02.021. 
  58. 58,0 58,1 Yao, Cui-Luan; Somero, George N. (February 2014). "The impact of ocean warming on marine organisms" (en). Chinese Science Bulletin 59 (5–6): 468–479. doi:10.1007/s11434-014-0113-0. 
  59. Derocher, A. E. (2004-04-01). "Polar Bears in a Warming Climate". Integrative and Comparative Biology 44 (2): 163–176. doi:10.1093/icb/44.2.163. PMID 21680496. 
  60. Burek, Kathy A.; Gulland, Frances M. D.; O'Hara, Todd M. (March 2008). "Effects of Climate Change on Arctic Marine Mammal Health". Ecological Applications 18 (sp2): S126–S134. doi:10.1890/06-0553.1. PMID 18494366. 
  61. Glick, Patrick; Clough, Jonathan; Nunley, Brad „Sea-Level Rise and Coastal Habitats in the Chesapeake Bay Region“. National Wildlife Federation. 2016-yil 4-martda asl nusxadan arxivlangan. Qaraldi: 2014-yil 8-noyabr.
  62. Stenson, G. B.; Hammill, M. O. (2014). "Can ice breeding seals adapt to habitat loss in a time of climate change?" (en). ICES Journal of Marine Science 71 (7): 1977–1986. doi:10.1093/icesjms/fsu074. 
  63. Ferguson, Steven H.; Young, Brent G.; Yurkowski, David J.; Anderson, Randi; Willing, Cornelia; Nielsen, Ole (2017). "Demographic, ecological, and physiological responses of ringed seals to an abrupt decline in sea ice availability". PeerJ 5: e2957. doi:10.7717/peerj.2957. PMID 28168119. PMC 5292026. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5292026. 
  64. Forcada, Jaume; Trathan, P. N.; Reid, K.; Murphy, E. J. (2005). "The Effects of Global Climate Variability in Pup Production of Antarctic Fur Seals". Ecology 86 (9): 2408–2417. doi:10.1890/04-1153. 
  65. 65,0 65,1 Evans, Peter G.H.; Bjørge, Arne (November 28, 2013). "Impacts of climate change on marine mammals". MCCIP Science Review 2013. https://www.seawatchfoundation.org.uk/wp-content/uploads/2015/05/Evans-Bj%C3%B8rge_2013.pdf. Qaraldi: April 1, 2022. Foydalanuvchi Alisher Nishonboyev/qumloq]]
  66. 66,0 66,1 Würsig, Bernd; Reeves, Randall R.; Ortega-Ortiz, J. G. „Global Climate Change and Marine Mammals“,. Marine Mammals, 2002 — 589–608 bet. DOI:10.1007/978-1-4615-0529-7_17. ISBN 978-0-306-46573-4. 
  67. Salvadeo, Christian J.; Lluch-Belda, Daniel; Gómez-Gallardo, Alejandro; Urbán-Ramírez, Jorge; MacLeod, Colin D. (10 March 2010). "Climate change and a poleward shift in the distribution of the Pacific white-sided dolphin in the northeastern Pacific". Endangered Species Research 11 (1): 13–19. doi:10.3354/esr00252. 
  68. Cañadas, A.; Vázquez, J.A. (2017-07-01). "Common dolphins in the Alboran Sea: Facing a reduction in their suitable habitat due to an increase in Sea surface temperature" (en). Deep Sea Research Part II: Topical Studies in Oceanography 141: 306–318. doi:10.1016/j.dsr2.2017.03.006. 
  69. Wild, Sonja; Krützen, Michael; Rankin, Robert W.; Hoppitt, William J.E.; Gerber, Livia; Allen, Simon J. (2019-04-01). "Long-term decline in survival and reproduction of dolphins following a marine heatwave" (en). Current Biology 29 (7): R239–R240. doi:10.1016/j.cub.2019.02.047. PMID 30939303. 
  70. Gomez-Salazar, Catalina; Coll, Marta; Whitehead, Hal (December 2012). "River dolphins as indicators of ecosystem degradation in large tropical rivers". Ecological Indicators 23: 19–26. doi:10.1016/j.ecolind.2012.02.034. 
  71. Milkov, A. V. (2004). "Global estimates of hydrate-bound gas in marine sediments: How much is really out there?". Earth-Science Reviews 66 (3–4): 183–197. doi:10.1016/j.earscirev.2003.11.002. 

External links[tahrir | manbasini tahrirlash]

Andoza:Climate change