Toʻplamlar nazariyasi

Vikipediya, ochiq ensiklopediya

Toʻplamlar nazariyasi - matning toʻplamlar umumiy xossalarini oʻrganadigan boʻlimi. Toʻplam tushunchasi mat.ning boshlangʻich tushunchasidir. T.n. asoschilari chex matematigi B. Boltsano va nemis matematigi G. Kantor. Toʻplamni tashkil qilgan obʼyektlar uning elementlari deyiladi. Agar x element A toʻplamning elementi boʻlsa, u holda x ye A kaby belgilanadi, aks holda x yo A kabi belgilanadi. Agar A toʻplamning elementlari soni chekli boʻlsa, A toʻplam chekli toʻplam, aks holda esa A toʻplam cheksiz toʻplam deyiladi. Mas., 1000 dan kichik juft sonlar toʻplami chekli toʻplamga, haqiqiy sonlar toʻplami esa cheksiz toʻplamga misol boʻladi. Agar A toʻplamning har bir elementi V toʻplamga tegishli boʻlsa, A toʻplam V toʻplamning qism toʻplami deyiladi va A s V kabi belgilanadi. A va V toʻplamlardan kamida bittasiga tegishli elementlar toʻplamiga Ava V toʻplamning birlashmasi (yigindisi) deyiladi va A gʻj V kabi belgilanadi. A va V toʻplamlarning har ikkalasiga tegishli elementlar toʻplami A va V toʻplamlarning kesishmasi (koʻpaytmasi) deyiladi va An V kabi belgilanadi. Agar A va V toʻplam elementlari orasida oʻzaro bir qiymatli moslik oʻrnatish mumkin boʻlsa, ularning quvvati teng deyiladi. Agar A tuplam bn natural sonlar toʻplami orasida oʻzaro bir qiymatli moslik oʻrnatish mumkin boʻlsa, A toʻplam sanokli toʻplam deyiladi. T.n. 19-a. oxiri — 20-a. boshlarida rivojlangan boʻlib, mat.ning differensial tenglamalar, ehtimollar nazariyasi, topologiya, funksional analiz, matematik mantiq, funksiyalar nazariyasi sohalarida keng qoʻllaniladi.