Mariana loy vulqonlari: Versiyalar orasidagi farq

Vikipediya, ochiq ensiklopediya
Kontent oʻchirildi Kontent qoʻshildi
Mariana Mud Volcanoes“ sahifasi tarjima qilib yaratildi
(Farq yoʻq)

31-Oktyabr 2022, 18:10 dagi koʻrinishi

Fayl:Map of Serpentine mud volcanoes from the Mariana arc.png
Mariana yoyidagi serpantinit loy vulqonlari xaritasi.[1]

Mariana yoyidagi loy vulqonlari gidrotermal geologik relef shakli bo'lib, ularda loy, suv va gaz shlaklari paydo bo'ladi. Mariana old yoyida kamida 10 ta loy vulqonlari faol otilmoqda,[1] jumladan, yaqinda oʻrganilgan Konus, Yinazao, Fantagisna (norasmiy ravishda Osmon dengizi togʻi sifatida tanilgan), Asut Tesoro (sobiq Katta Koʻk) va Janubiy Chamorro serpantiniti loy vulqonlari.[1][2] Bu loy vulqonlari ular hosil bo'lgan geologik muhit bilan bog'liq bo'lgan noyob serpantinit loy tarkibini otadilar.[1][3][2] Serpantinit loylari subduktsiya zonasi metamorfizmi va plitalarning suvsizlanishi tufayli mantiya metasomatizmining mahsulidir.[1][3][2] Natijada, bu loy vulqonlaridan otiladigan serpantinit loylari ko'pincha serpantinlanish jarayonida to'liq o'zgarmagan mantiya peridotit materialining bo'laklarini o'z ichiga oladi.[1][2][3][4] O'zgartirilgan mantiya moddasi bo'laklaridan tashqari, serpantinit loylari ichidan cho'zilgan dengiz tog'lari (shu jumladan marjonlar) ham topilgan.[1] Mariana oldingi yoyidagi serpantinit loy vulqonlari ko'pincha oldingi yoy po'stidagi yoriqlar ustida joylashgan. Ushbu yoriqlar gidratlangan mantiya materialining sirtga ko'tarilishi uchun o'tkazgich vazifasini bajaradi.[1][3] Mariana loy vulqonlari yoy magmalari va vulqon otilishiga olib keladigan mantiya hidratsiyasi jarayoniga bevosita ko'rinadi.[5]

Geologiyasi

Fayl:Regional map of the Izu-Bonin-Mariana subduction system.jpeg
Izu - Bonin - Mariana subduktsiya tizimining mintaqaviy xaritasi. Chiziqli chiziq Tinch okeani va Filippin tektonik plitalari orasidagi konvergent chegarani ifodalaydi.

Old yoy vulqon yoyi va xandaq o'rtasida joylashgan bo'lib, u erda magma hosil bo'lmaydi. Mariana vulqon yoyida faol magmatik vulkanizm sodir bo'ladi va Marina oldingi yoyi Tinch okeani plitasi Filippin plitasi ostiga cho'kayotgan Tinch okeani va Filippin tektonik plitalari o'rtasidagi konvergent chegaralarda joylashgan.[1][6][7] Mariana tizimi Yaponiyadan shimolga janubda Palaugacha cho'zilgan Izu - Bonin - Mariana birlashgan subduktsiya tizimining bir qismi hisoblanadi.[6][7] Subduktsiya Tinch okeanining g'arbiy qismida tektonik plitalarning qayta tashkil etilishi davrida 52 - 50 milya oralig'ida boshlangan.[6][8][9][10] Mariana yoyi ikkita vulqon yoyini o'z ichiga oladi, biri faol yoy, ikkinchisi esa qoldiq yoy bo'lib, u subduktsiya zonasidan uzoqroqda joylashgan faol bo'lmagan vulqon yoyidir.[7][11] Qoldiq yoy, xandaq g'arbga taxminan 6 million million yil davomida ko'chib o'tganda hamda Mariana chuqurligini hosil qilgan orqa yoyning tarqalishidan orqada qoldi. Bu jarayon faol vulkanizmning sharqqa koʻchishi, yangi vulqon yoyining[11] hosil boʻlishiga va Mariana yoyining sharqqa yoyilishiga olib keldi.[7][11]

Serpantinit loyining hosil bo'lishi

Tinch okean plitasi mantiyaga cho'kib ketganda, pelagik cho'kindi va gidratlangan bazaltlar suvsizlana boshlaydi, bu esa Mariana yoyi ostidagi mantiya ichiga suv va uchuvchi moddalarni chiqaradi.[1][2] Ushbu suv va uchuvchi moddalar aralashmasi ustunlik qiluvchi Filippin plitasi ostidagi mantiya peridotit moddasi bilan o'zaro ta'sir qiladi. Mariana oldingi yoy peridotiti xarzburgit tarkibiga ega, shuning uchun uning tarkibida asosan olivin va ortopiroksen ( enstatit ) mavjud.[1][12][13][14] Mantiyadagi olivin (Mg2 SiO4) va enstatit (MgSiO4) ning hidratsiyasi natijasida Mg ga boy serpantin (Mg 3 Si 2 O5 (OH)4 ) va brusit (Mg (OH)2 hosil bo'ladi.[1][15][16] Bu jarayon serpantinizatsiya deb ataladi.[17][18] Serpantin minerallar guruhi bo'lib, antigorit, lizardit va xrizotil minerallarini o'z ichiga oladi, ularning barchasi bir xil kimyoviy tarkibga ega, ammo kristallografik jihatdan farqlanadi.

Reaksiyalar

Brusit
Lizardit (yashil) va xrizotil (oq) serpantin.

(Olivin reaksiyasi): 2Mg2 SiO4 + 3H 2 O ←→ Mg3 Si2 O5 (OH)4 + Mg(OH)2[15]

(Enstatit reaktsiyasi): 6MgSiO3 + 3H2 O ←→ Mg3 Si2 O5 (OH)4 + Mg3 Si4 O10 (OH)2[16]

Olivin (yashil mineral klaster)
Enstatit (tasvirdagi quyuq kristallar)

(Olivin+Enstatit reaksiyasi): Mg2 SiO4 + MgSiO3 + 2H2 O ←→ Mg3 Si2 O5 (OH)4[16]

Fayl:Serpentine Mud volcano schematic for the Mariana Arc.png
Serpantinitli loy vulqonlarining sxematik kesimi va ular subduktsiya kanalidan materialni qanday olishlari.[1]

Serpantinitli loy vulqonlarining g'ovak suyuqligi - bu suv bo'lib, unda ko'p miqdorda erigan H2, CH4, C2 H6 gazlari (uchuvchi moddalar) mavjud.[1] Teshik suyuqliklaridagi H2 va CH4 kontsentratsiyasi tendentsiyalari shuni ko'rsatadiki, H2 hosil bo'lishi serpantinizatsiya jarayoni, so'ngra abiotik ( Fischer-Tropsch tipidagi) CH4 ishlab chiqarish bilan bog'liq.[1] Dengiz suvi bilan solishtirganda, bu serpantinit loy vulqonlarining g'ovak suyuqliklari Cl, Ca, Mg, Sr, Li va Si kontsentratsiyasiga ega, ammo pH, ishqoriylik, K, Na, Rb, Cs va Ba miqdori yuqori.[4] Xandaqqa eng yaqin boʻlgan loy vulqonlari (yaʼni, Yinazoa va Fantangisna) gʻovak suyuqligida Ca va Sr ning yuqori konsentratsiyasi va K, Na, Cl, SO4 va B ning past konsentratsiyasiga ega.[1] Bundan farqli o'laroq, xandaqdan eng uzoqda joylashgan loy vulqonlarining g'ovak suyuqliklari (ya'ni, Asut Tesoru, Konus va Janubiy Chamorro) yuqori pH qiymatlariga ega (12,4 gacha), Ca va Sr ning kamaygan kontsentratsiyasi va K, Na kontsentratsiyasi yuqori. Cl, SO4 va B.[1][4] Yinazao va Fantangisna suyuqlik kimyosi diagenez va opal suvsizlanish kabi sayoz subduktsiya jarayonlari bilan boshqariladi, Asut Tesoru suyuqlik kimyosi esa dekarbonatsiya va boshqa chuqurroq subduktsiya jarayonlari bilan boshqariladi. loy mineralining parchalanishi.[1][19][20][21]

Ma'lumotnomalarsi

  1. 1,00 1,01 1,02 1,03 1,04 1,05 1,06 1,07 1,08 1,09 1,10 1,11 1,12 1,13 1,14 1,15 1,16 1,17 Fryer, P.. International Ocean Discovery Program Expedition 366 Preliminary Report, International Ocean Discovery Program Preliminary Report (en). International Ocean Discovery Program, 2017-11-06. DOI:10.14379/iodp.pr.366.2017.  Manba xatosi: Invalid <ref> tag; name ":0" defined multiple times with different content
  2. 2,0 2,1 2,2 2,3 2,4 Fryer, P.; Wheat, C. G.; Mottl, M. J. (1999). <0103:mbmvif>2.3.co;2 "Mariana blueschist mud volcanism: Implications for conditions within the subduction zone". Geology 27 (2): 103. doi:10.1130/0091-7613(1999)027<0103:mbmvif>2.3.co;2. ISSN 0091-7613. http://dx.doi.org/10.1130/0091-7613(1999)027<0103:mbmvif>2.3.co;2.  Manba xatosi: Invalid <ref> tag; name ":1" defined multiple times with different content
  3. 3,0 3,1 3,2 3,3 Proceedings of the Ocean Drilling Program, 125 Initial Reports, Proceedings of the Ocean Drilling Program (en) Fryer: . Ocean Drilling Program, 1990. DOI:10.2973/odp.proc.ir.125.101.1990. 
  4. 4,0 4,1 4,2 Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder; Alt, Jeffrey C. (2015). "Ultramafic clasts from the South Chamorro serpentine mud volcano reveal a polyphase serpentinization history of the Mariana forearc mantle" (en). Lithos 227: 1–20. doi:10.1016/j.lithos.2015.03.015. https://linkinghub.elsevier.com/retrieve/pii/S0024493715001073.  Manba xatosi: Invalid <ref> tag; name ":7" defined multiple times with different content
  5. Tatsumi, Yoshiyuki.. Subduction zone magmatism, Eggins, Steve., Cambridge, Mass., USA: Blackwell Science, 1995. ISBN 0-86542-361-X. OCLC 31740360. 
  6. 6,0 6,1 6,2 Wu, Jonny; Suppe, John; Lu, Renqi; Kanda, Ravi (2016). "Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods: PHILIPPINE SEA PLATE TECTONICS-SLABS" (en). Journal of Geophysical Research: Solid Earth 121 (6): 4670–4741. doi:10.1002/2016JB012923. 
  7. 7,0 7,1 7,2 7,3 Shervais, John W.; Reagan, Mark; Haugen, Emily; Almeev, Renat R.; Pearce, Julian A.; Prytulak, Julie; Ryan, Jeffrey G.; Whattam, Scott A. et al. (2019). "Magmatic Response to Subduction Initiation: Part 1. Fore‐arc Basalts of the Izu‐Bonin Arc From IODP Expedition 352" (en). Geochemistry, Geophysics, Geosystems 20 (1): 314–338. doi:10.1029/2018GC007731. ISSN 1525-2027. PMID 30853858. PMC 6392113. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=6392113. 
  8. Reagan, Mark K.; Heaton, Daniel E.; Schmitz, Mark D.; Pearce, Julian A.; Shervais, John W.; Koppers, Anthony A.P. (2019). "Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation" (en). Earth and Planetary Science Letters 506: 520–529. doi:10.1016/j.epsl.2018.11.020. https://linkinghub.elsevier.com/retrieve/pii/S0012821X18306794. 
  9. Ishizuka, Osamu; Hickey-Vargas, Rosemary; Arculus, Richard J.; Yogodzinski, Gene M.; Savov, Ivan P.; Kusano, Yuki; McCarthy, Anders; Brandl, Philipp A. et al. (2018). "Age of Izu–Bonin–Mariana arc basement" (en). Earth and Planetary Science Letters 481: 80–90. doi:10.1016/j.epsl.2017.10.023. 
  10. Ishizuka, Osamu; Taylor, Rex N.; Yuasa, Makoto; Ohara, Yasuhiko (2011). "Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea: OLIGOCENE KYUSHU-PALAU ARC" (en). Geochemistry, Geophysics, Geosystems 12 (5): n/a. doi:10.1029/2010GC003440. 
  11. 11,0 11,1 11,2 Fryer, Patricia (1995), Taylor, Brian (muh.), „Geology of the Mariana Trough“, Backarc Basins (inglizcha), Boston, MA: Springer US: 237–279, doi:10.1007/978-1-4615-1843-3_6, ISBN 978-1-4613-5747-6, qaraldi: 2020-11-05
  12. Reagan, Mark K.; Ishizuka, Osamu; Stern, Robert J.; Kelley, Katherine A.; Ohara, Yasuhiko; Blichert-Toft, Janne; Bloomer, Sherman H.; Cash, Jennifer et al. (2010). "Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system: FORE-ARC BASALTS AND SUBDUCTION INITIATION" (en). Geochemistry, Geophysics, Geosystems 11 (3): n/a. doi:10.1029/2009GC002871. 
  13. Reagan, Mark K.; Pearce, Julian A.; Petronotis, Katerina; Almeev, Renat R.; Avery, Aaron J.; Carvallo, Claire; Chapman, Timothy; Christeson, Gail L. et al. (2017-08-18). "Subduction initiation and ophiolite crust: new insights from IODP drilling" (en). International Geology Review 59 (11): 1439–1450. doi:10.1080/00206814.2016.1276482. ISSN 0020-6814. https://www.tandfonline.com/doi/full/10.1080/00206814.2016.1276482. 
  14. Bloomer, Sherman H.; Hawkins, James W. (1987). "Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench" (en). Contributions to Mineralogy and Petrology 97 (3): 361–377. doi:10.1007/BF00371999. ISSN 0010-7999. http://link.springer.com/10.1007/BF00371999. 
  15. 15,0 15,1 Okamoto, Atsushi; Ogasawara, Yuichi; Ogawa, Yasumasa; Tsuchiya, Noriyoshi (2011). "Progress of hydration reactions in olivine–H2O and orthopyroxenite–H2O systems at 250°C and vapor-saturated pressure" (en). Chemical Geology 289 (3–4): 245–255. doi:10.1016/j.chemgeo.2011.08.007. https://linkinghub.elsevier.com/retrieve/pii/S000925411100341X.  Manba xatosi: Invalid <ref> tag; name ":5" defined multiple times with different content
  16. 16,0 16,1 16,2 Ogasawara, Yuichi; Okamoto, Atsushi; Hirano, Nobuo; Tsuchiya, Noriyoshi (2013). "Coupled reactions and silica diffusion during serpentinization" (en). Geochimica et Cosmochimica Acta 119: 212–230. doi:10.1016/j.gca.2013.06.001. https://linkinghub.elsevier.com/retrieve/pii/S0016703713003311.  Manba xatosi: Invalid <ref> tag; name ":6" defined multiple times with different content
  17. Moody, Judith B. (1976). "Serpentinization: a review" (en). Lithos 9 (2): 125–138. doi:10.1016/0024-4937(76)90030-X. https://linkinghub.elsevier.com/retrieve/pii/002449377690030X. 
  18. Hyndman, Roy D; Peacock, Simon M (2003-07-25). "Serpentinization of the forearc mantle" (en). Earth and Planetary Science Letters 212 (3): 417–432. doi:10.1016/S0012-821X(03)00263-2. ISSN 0012-821X. http://www.sciencedirect.com/science/article/pii/S0012821X03002632. 
  19. A. Haggerty, Janet (1991). "Evidence from fluid seeps atop serpentine seamounts in the Mariana forearc: Clues for emplacement of the seamounts and their relationship to forearc tectonics" (en). Marine Geology 102 (1–4): 293–309. doi:10.1016/0025-3227(91)90013-T. https://linkinghub.elsevier.com/retrieve/pii/002532279190013T. 
  20. Hulme, Samuel M.; Wheat, C. Geoffery; Fryer, Patricia; Mottl, Michael J. (2010). "Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone: PORE WATER CHEMISTRY OF MARIANA MUD VOLCANOES" (en). Geochemistry, Geophysics, Geosystems 11 (1): n/a. doi:10.1029/2009GC002674. 
  21. Mottl, Michael J.; Wheat, C. Geoffrey; Fryer, Patricia; Gharib, Jim; Martin, Jonathan B. (2004). "Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate" (en). Geochimica et Cosmochimica Acta 68 (23): 4915–4933. doi:10.1016/j.gca.2004.05.037. https://linkinghub.elsevier.com/retrieve/pii/S0016703704004466.