Fotogeokimyo: Versiyalar orasidagi farq

Vikipediya, ochiq ensiklopediya
Kontent oʻchirildi Kontent qoʻshildi
Sakinabonu (munozara | hissa)
Photogeochemistry“ sahifasi tarjima qilib yaratildi
(Farq yoʻq)

24-Noyabr 2022, 16:58 dagi koʻrinishi

Fotogeokimyo - fotokimyo va geokimyoni yer yuzasining tabiiy komponentlarida sodir boʻladigan yoki sodir boʻlishi mumkin boʻlgan yorugʻlik taʼsirida sodir boʻladigan kimyoviy reaksiyalarni oʻrganish uchun birlashtiradigan yo'nalish. Ushbu mavzu bo'yicha birinchi keng qamrovli sharh 2017-yilda kimyogar va tuproqshunos Timoti A Doane tomonidan nashr etilgan[1], ammo fotogeokimyo atamasi bir necha yil oldin yorug'lik ta'sirida mineral o'zgarishlarning shakllanishdagi rolini tavsiflovchi tadqiqotlarda kalit so'z sifatida paydo bo'lgan edi. Yerning biogeokimyosi[2], bu haqiqatan ham fotogeokimyoviy tadqiqotning asosini tavsiflaydi, ammo ta'rifga boshqa jihatlar ham kiritilishi mumkin.

Quyosh nurlari Yer yuzasining tarkibiy qismlari o'rtasidagi kimyoviy reaktsiyalarni yanada osonlashtiradi.

Fotogeokimyo sohasi

Fotogeokimyoviy reaksiyaning konteksti bevosita yer yuzasi hisoblandi, chunki u yerda quyosh nuri mavjud (garchi boshqa yorug'lik manbalari, masalan, xemiluminesans fotogeokimyoviy tadqiqotdan qat'iyan chiqarib tashlanmaydi) bo'lganligi uchun ham bu asosiy sabab hisoblanadi. Tog' jinslari, tuproq va detritlar kabi quruqlikning tarkibiy qismlari o'rtasida reaktsiyalar paydo bo'lishi ham mumkin, cho'kindi va erigan organik moddalar kabi yer usti suvlarining tarkibiy qismlari, mineral aerozollar va gazlar kabi quruqlik yoki suv bilan bevosita aloqada bo'lgan atmosfera chegara qatlamining tarkibiy qismlari sanaladi. Ko'rinadigan va o'rta va uzoq to'lqinli ultrabinafsha nurlanish fotogeokimyoviy reaktsiyalar uchun asosiy energiya manbai hisoblanadi, chunki yorug'lik to'lqin uzunligi taxminan 290 (nm)dan qisqabo'lganligi uchun ham  hozirgi atmosfera tomonidan to'liq so'riladi[3] [4] [5] . Aynan shu sababli ham hozirgi yer atmosferasidan farqli atmosferalarni hisobga olmaganda amalda bu ahamiyatsiz hisoblanadi.

Fotogeokimyoviy reaksiyalar tirik organizmlar tomonidan osonlashtirilmagan kimyoviy reaksiyalar bilan chegaralanadi. O'simliklar va boshqa organizmlardagi fotosintezni o'z ichiga olgan reaktsiyalar, masalan, fotogeokimyo deb hisoblanmaydi, chunki bu reaktsiyalar uchun fizik-kimyoviy kontekst organizm tomonidan o'rnatiladi va bu reaktsiyalar davom etishi uchun saqlanishi kerak (ya'ni, organizmda reaktsiyalar to'xtasa). o'ladi). Bundan farqli ravishda, agar organizm tomonidan ma'lum bir birikma hosil bo'lsa va organizm o'lsa-da, ammo birikma saqlanib qolsa, bu birikma kelib chiqishi biologik bo'lsa ham fotogeokimyoviy reaktsiyada mustaqil ravishda ishtirok etishi mumkin (masalan, biogen mineral cho'kmalar [6] [7] yoki o'simliklardan suvga ajralib chiqadigan organik birikmalar [8] ).

Temir (III) oksidlari va oksigidroksidlar masalan, oxra toshlari, fotogeokimyoviy reaksiyalarda keng tarqalgan katalizatorlardir.

Bir nechta alohida holatlar bundan mustasno sanaladi[2] [9] [10], fotogeokimyo ta'rifiga mos keladigan tadqiqotlar aniq belgilanmagan, ayniqsa fotokimyo rivojlanayotgan yoki yangi soha bo'lgan davrda fotokimyoning jabhalari o'rganildi lekin an'anaviy ravishda fotokimyo sifatida tasniflanib berilgan. Biroq, fotogeokimyoviy tadqiqotlar o'ziga xos kontekst va ta'sirlardan kelib chiqqan holda ajratilishi mumkin, bu esa "eksperimental geokimyoning yomon o'rganilgan sohasi" ga ko'proq ta'sir qiladi[2]. Fotogeokimyo ta'rifiga mos keladigan o'tmishdagi tadqiqotlar retroaktiv ravishda shunday belgilanishi mumkin.

Fotogeokimyoviy reaksiyalarni tasniflash

Fotogeokimyoviy reaksiyalar termodinamika va ishtirok etayotgan materiallarning tabiatiga qarab tasniflanishi ya'ni shunga qarab bo'linishi , ajratib olish mumkin. Bundan tashqari, yorug'lik va tirik organizmlar (fototrofiya) ishtirokidagi o'xshash reaksiyaga nisbatan noaniqlik mavjud bo'lib qolsa, "fotokimyoviy" atamasi ma'lum bir abiotik reaktsiyani tegishli fotobiologik reaksiyadan ajratish uchun ishlatilishi ham mumkin. Masalan, "temir (II) ning fotooksidlanishi" yorug'lik (fototrofik yoki fotobiologik temir oksidlanishini misol tariqasida etish mumkin) [11] yoki qat'iy kimyoviy, abiotik jarayon (temirning fotokimyoviy oksidlanishi) tomonidan boshqariladigan biologik jarayonga ishora qilishi mumkin. Xuddi shunday, yorug'lik ta'sirida suvni O 2 ga aylantiradigan abiotik jarayonni xuddi shu muhitda yuzaga kelishi mumkin bo'lgan suvning fotobiologik oksidlanishidan farqlash uchun oddiygina "suvning fotooksidlanishi" emas, (masalan, suv o'tlari tomonidan) balki "suvning fotokimyoviy oksidlanishi" deb nomlanishi mumkin.

Termodinamikasi

Fotogeokimyoviy reaksiyalar umumiy fotokimyoviy reaksiyalarni tavsiflashda qo‘llaniladigan prinsiplar bo‘yicha tavsiflangani sababli, aynan shunga o‘xshash tarzda tasniflanishi mumkin:

  1. Fotosintez: eng umumiy ma'noda, fotosintez deganda erkin energiyaning o'zgarishi (DG o ) reaktsiyaning o'zi uchun ijobiy bo'lgan yorug'lik bilan faollashtirilgan har qanday reaksiyaga ishora qiladi (katalizator yoki yorug'lik mavjudligini hisobga olmagan holda). Mahsulotlar reaktivlarga qaraganda yuqori energiyaga ega va shuning uchun reaktsiya termodinamik jihatdan noqulay bo'ladi, faqat katalizator bilan birgalikda yorug'lik ta'siridan tashqari[12]. Fotosintetik reaksiyalarga suvning H 2 va O 2 ni hosil qilish uchun boʻlinishi, CO 2 va suvning O 2 va metanol va metan kabi qaytarilgan uglerod birikmalarini hosil qilish uchun reaksiyasi, N 2 ning suv bilan reaksiyasi NH 3 va O 2 hosil boʻlishi misol boʻladi.
  2. Fotokataliz: bu katalizator ishtirokida tezlashtirilgan reaksiyalarni anglatadi (yorug'likning o'zi katalizator emas, chunki xato nazarda tutilgan bo'lishi mumkin). Umumiy reaksiya erkin energiyaning salbiy o'zgarishiga ega va shuning uchun termodinamik jihatdan qulaydir[12]. Fotokatalitik reaksiyalarga organik birikmalarning O 2 bilan CO 2 va suv hosil qilish reaksiyasi, organik birikmalarning suv bilan reaksiyaga kirishishi natijasida H 2 va CO 2 ni misol qilib keltirish mumkin.
  3. Katalizlanmagan fotoreaktsiyalar: fotoinduktsiyalangan yoki fotoaktivlangan reaktsiyalar faqat yorug'lik ta'sirida sodir bo'ladi. Masalan, organik birikmalarning fotodegradatsiyasi ko'pincha katalizatorsiz davom etadi, reaksiyaga kirishuvchi moddalarning o'zi yorug'likni o'zlashtiradi.

Yuzaki sezgirlik

Bilvosita katalizatorlar reaktivlarning sirt sensibilizatsiyasi orqali ham ta'sir qilishi mumkin, bu orqali sirtga so'rilgan turlar fotodegradatsiyaga ko'proq moyil bo'lib qolar ekan[13].

Uglerod aylanishidagi reaksiyalar

Reaction Type of reaction Catalyst/reaction conditions Related biological or chemical process
N2 → NH3 photofixation (photoreduction) of dinitrogen desert sands in air;[9] ZnO, Al2O3, Fe2O3, Ni2O3, CoO, CuO, MnO2, and sterile soil;[14] aqueous suspensions of TiO2, ZnO, CdS, SrTiO3[15] and hydrous iron(III) oxide[16] under N2; iron titanate[17][18] biological nitrogen fixation (reductive)
N2 + H2O → NH3 + O2 photoreduction of dinitrogen + photooxidation of water TiO2 under near-UV irradiation in the absence of O2; Fe-doped TiO2 and α-Fe2O3 under sunlight[19]
N2 → N2H4 photofixation (photoreduction) of dinitrogen desert sands in air[9]
N2 + H2O → N2H4 + O2 photoreduction of dinitrogen + photooxidation of water TiO2 under near-UV irradiation in the absence of O2[19]
N2 + O2 → NO photofixation (photooxidation) of dinitrogen TiO2 in air[20] chemical nitrogen fixation (oxidative)
N2 → NO photooxidation of dinitrogen aqueous suspension of ZnO under N2[21]
N2 + H2O → NO + H2 photooxidation of dinitrogen + photoreduction of water ZnO-Fe2O3 under N2[22]
NH3 → NO

NH3 → NO

photooxidation of ammonia ("photonitrification") TiO2;[23][24][25] ZnO, Al2O3, and SiO2;[23] and in sterile soil[26] nitrification (biological ammonia oxidation)
NH3 → N2O TiO2[24] nitrification
NH + NO → N2 TiO2, ZnO, Fe2O3, and soil[27][28] chemodenitrification; anammox; thermal decomposition of ammonium nitrite
NH4NO3 → N2O on Al2O3[29] denitrification; thermal decomposition of ammonium nitrate
NO or HNO3 → NO, NO2, N2O photoreduction of nitrate; photodenitrification; renoxification on Al2O3;[30][31][32] TiO2;[31][32][33] SiO2;[32][33] α-Fe2O3, ZnO;[32] Sahara sand[33] denitrification
NO2 → HONO on humic acids and soil[34]
NO → NH3 TiO2[35] dissimilatory nitrate reduction to ammonia
N2O → N2 observed with sands of various composition[36] decomposition of nitrous oxide (terminal reaction of biological denitrification)
N2O → N2 + O2 photodissociation of nitrous oxide ZnO under UV irradiation;[37] TiO2 and Ag-doped TiO2 under UV irradiation[38] thermal dissociation of nitrous oxide
amino acids → NH3 photoammonification (photomineralization of organic N) on Fe2O3 or soil in sunlight[39] biological ammonification (mineralization of N)
dissolved organic N → NH3 photoammonification (photomineralization of organic N) [40][41] biological ammonification (mineralization of N)
Reaktsiya Reaksiya turi Katalizator/reaktsiya shartlari Tegishli biologik yoki kimyoviy jarayon
CO 2 → CO

CO 2 → HCOOH

CO 2 → CH 2 O

CO 2 → CH 3 OH

CO 2 → CH 4

CO 2 ni fotokimyoviy kamaytirish (bir uglerodli mahsulotlar) Keng, yaxshi ko'rib chiqilgan, masalan, [42] [43] [44] quyosh yoqilg'isini ishlab chiqarish ( sun'iy fotosintez ) bo'yicha adabiyotlar to'plami; ko'plab katalizatorlar CO 2 ning bakterial kamayishi; o'simlik va suv o'tlari fotosintezi
1. CO 2 → C 2 H 5 OH

2. CO 2 → C 2 H 4, C 2 H 6

3. CO 2 → tartarik, glyoksilik, oksalat kislotalari

CO 2 ni fotokimyoviy kamaytirish (bir nechta uglerodli mahsulotlar) 1. SiC [45] 2. SiC/Cu [46] 3. ZnS [47]
CO 2 + H 2 O → CH 4 SrTiO 3 vakuum ostida [48]
CH 4 → CH 2 O

CH 4 → CO 2

metanning fotokimyoviy oksidlanishi titan dioksidida CO 2, CO va format hosil bo'lishi kuzatiladi [49] assimilyatsiya qiluvchi metanotrofiya (formaldegid), boshqa aerob metan almashinuvi (CO 2 ), [50] metanning anaerob oksidlanishi (CO 2 )
CH 4 → C 2 H 6 + H 2 fotoinduktsiyali to'g'ridan-to'g'ri metan birikmasi SiO 2 -Al 2 O 3 -TiO 2 [51]
CH 3 COOH → CH 4 + CO 2 N 2 atmosferasida TiO 2 [52] da kuzatilgan atsetoklastik metanogenez
CH 3 COOH → C 2 H 6 TiO 2 [53] atsetoklastik metanogenez; oksidlovchi dekarboksillanish
CH 3 CH 2 COOH → C 3 H 8 + CO 2 oksidlovchi dekarboksillanish
o'simlik axlati → CO 2 ? o'simlik axlatining fotodegradatsiyasi [54] mikroblarning parchalanishi
oksik sharoitda o'simlik komponentlari (masalan, pektin) → CH 4 UV nurlanishi [55] [56] metanogenez
oksik sharoitda tuproq → CH 4 UV nurlanishi [57] metanogenez
erigan organik moddalarning parchalanishi 1. katalizlanmagan fotodegradatsiya

2. fotokatalitik degradatsiya

3. fotokimyoviy minerallashuv (mahsulot sifatida CO va CO 2 )

katalizatorlarsiz [58] yoki temir (III) turlari [59] va TiO 2 kabi katalizatorlar bilan kuzatiladi; [60] [61] okeanlarda uchraydi [62] umumiy biologik metabolizm
sorblangan organik moddalar → erigan organik moddalar fotokimyoviy eritma [63] biologik erish/degradatsiya
uglevodlar va yog'larning oksidlanishi ZnO bilan ham, holda ham kuzatilgan [64] umumiy aerob metabolizm
Xlorflorokarbonlar → Cl - + F - + CO 2 TiO 2, ZnO, Fe 2 O 3, kaolin, SiO 2, Al 2 O 3 [65] biologik degradatsiya

Boshqa reaktsiyalar, shu jumladan bog'langan tsikllar

Reaktsiya Reaksiya turi Katalizator/reaktsiya shartlari Tegishli biologik yoki kimyoviy jarayon
H 2 O → H 2 suvning fotoreduksiyasi UV va ko'rinadigan yorug'lik ostida ko'plab katalizatorlar [66] [67] biologik vodorod ishlab chiqarish
H 2 O → O 2 suvning fotooksidlanishi a-Fe 2 O 3 da; [68] qatlamli ikki gidroksidli minerallar [69] [70] o'simliklar, suv o'tlari va ba'zi bakteriyalar tomonidan suvning oksidlanishi [71]
H 2 O → H 2 + O 2 fotokimyoviy suvning bo'linishi TiO 2 [19] [72] (suvning termokimyoviy bo'linishi, masalan, temir oksidi aylanishi )
CO + H 2 O → CO 2 + H 2 [73]
CH 4 + NH 3 + H 2 O → aminokislotalar + H 2 Pt/TiO 2 [74]
CO + NH 3 → HCONH 2 [73]
FeCO 3 + H 2 O → H 2 + CO 2 + Fe 3 O 4 / g-Fe 2 O 3 suvning fotoreduksiyasi,

Fe(II) ning fotokimyoviy oksidlanishi

Anoksik sharoitda UV nurlanishi [2]
FeCO 3 + CO 2 → organik birikmalar + FeOOH abiotik fotosintez,

Fe(II) ning fotokimyoviy oksidlanishi

UV nurlanishi [75]
kolloid Fe (III) (gidr) oksidlari va Mn (IV) oksidlari → suvli Fe (II) va Mn (II) fotokimyoviy eritma (reduktiv) [76] [77] [78] bilan yoki [78] [79] organik ligandlarsiz biologik reduktiv eritma
erigan organik moddalar va Fe → zarracha organik moddalar va Fe fotokimyoviy flokulyatsiya [80]
ZnS → Zn 0 + S 0 (havo yo'qligi)

ZnS → Zn 0 + SO 2−</br> 2− (havo mavjudligi)

fotokorroziya ; [81] birinchi navbatda sulfidli yarimo'tkazgichlarga ta'sir qiladi sulfidlarning bakterial oksidlanishi, egpirit

Manbalar

  1. Doane, TA (2017). "A survey of photogeochemistry". Geochem Trans 18: 1. doi:10.1186/s12932-017-0039-y. PMID 28246525. PMC 5307419. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5307419. 
  2. 2,0 2,1 2,2 2,3 Kim, J. Dongun; Yee, Nathan; Nanda, Vikas; Falkowski, Paul G. (2011). "Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides". Proceedings of the National Academy of Sciences 110 (25): 10073–10077. doi:10.1073/pnas.1308958110. PMID 23733945. PMC 3690895. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3690895. 
  3. The Pharmaceutical Journal and Transactions. Pharmaceutical Society of Great Britain, 1881 — 227 bet. 
  4. Dulin, David; Mill, Theodore (1982). "Development and evaluation of chemical actinometers". Environmental Science and Technology 16 (11): 815–820. doi:10.1021/es00105a017. PMID 22299793. 
  5. Seinfield, J.H.. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, 2006. 
  6. Ferris, F.G. (2005). "Biogeochemical properties of bacteriogenic iron oxides". Geomicrobiology Journal 22 (3–4): 79–85. doi:10.1080/01490450590945861. 
  7. Spiro, T.G.; Bargar, J.R.; Sposito, G; Tebo, B.M. (2010). "Bacteriogenic manganese oxides". Accounts of Chemical Research 43 (1): 2–9. doi:10.1021/ar800232a. PMID 19778036. 
  8. Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, 2002. 
  9. 9,0 9,1 9,2 Schrauzer, G.N.; Strampach, N.; Hui, L.N.; Palmer, M.R.; Salehi, J. (1983). "Nitrogen photoreduction on desert sands under sterile conditions". Proceedings of the National Academy of Sciences of the USA 80 (12): 3873–3876. doi:10.1073/pnas.80.12.3873. PMID 16593330. PMC 394157. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=394157. 
  10. Falkowski, P.G. (2015). "From light to life". Origins of Life and Evolution of Biospheres 45 (3): 347–350. doi:10.1007/s11084-015-9441-6. PMID 26105723. 
  11. Hegler, F; Posth, NR; Jiang, J; Kappler, A (2008). "Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments". FEMS Microbiology Ecology 66 (2): 250–260. doi:10.1111/j.1574-6941.2008.00592.x. PMID 18811650. 
  12. 12,0 12,1 Mills, A; Le Hunte, S (1997). "An overview of semiconductor photocatalysis". Journal of Photochemistry and Photobiology A 108: 1–35. doi:10.1016/s1010-6030(97)00118-4. 
  13. Ausloos, P; Rebbert, RE; Glasgow, L (1977). "Photodecomposition of chloromethanes absorbed on silica surfaces". Journal of Research of the National Bureau of Standards 82: 1. doi:10.6028/jres.082.001. PMID 34565950. 
  14. Dhar, NR (1958). "Influence de la lumiere sur la fixation de l'azote". Journal de Chimie Physique et de Physicochimie Biologique 55: 980–984. doi:10.1051/jcp/1958550980. 
  15. Miyama, H; Fujii, N; Nagae, Y (1980). "Heterogeneous photocatalytic synthesis of ammonia from water and nitrogen". Chemical Physics Letters 74 (3): 523–524. doi:10.1016/0009-2614(80)85266-3. 
  16. Tennakone, K; Ileperuma, O.A.; Bandara, J.M.S.; Thaminimulla, C.T.K.; Ketipearachchi, U.S. (1991). "Simultaneous reductive and oxidative photocatalytic nitrogen fixation in hydrous iron(III) oxide loaded nafion films in aerated water". Journal of the Chemical Society, Chemical Communications 8 (8): 579–580. doi:10.1039/c39910000579. 
  17. Rusina, O.; Linnik, O; Eremenko, A; Kisch, H (2003). "Nitrogen photofixation on nanostructured iron titanate films". Chemistry: A European Journal 9 (2): 561–565. doi:10.1002/chem.200390059. PMID 12532306. 
  18. Linnik, O; Kisch, H (2006). "On the mechanism of nitrogen photofixation at nanostructured iron titanate films". Photochemical and Photobiological Sciences 5 (10): 938–942. doi:10.1039/b608396j. PMID 17019472. 
  19. 19,0 19,1 19,2 Schrauzer, GN; Guth, TD (1977). "Photolysis of water and photoreduction of nitrogen on titanium dioxide". Journal of the American Chemical Society 99 (22): 7189–7190. doi:10.1021/ja00464a015. 
  20. Bickley, RI; Vishwanathan, V (1979). "Photocatalytically induced fixation of molecular nitrogen by near UV radiation". Nature 280 (5720): 306–308. doi:10.1038/280306a0. 
  21. Ileperuma, OA; Weerasinghe, FNS; Lewke Bandara, TS (1989). "Photoinduced oxidative nitrogen fixation reactions on semiconductor suspensions". Solar Energy Materials 19 (6): 409–414. doi:10.1016/0165-1633(89)90035-x. 
  22. Tennakone, K; Ileperuma, OA; Thaminimulla, CTK; Bandara, JMS (1992). "Photo-oxidation of nitrogen to nitrite using a composite ZnO-Fe2O3 catalyst". Journal of Photochemistry and Photobiology A 66: 375–378. doi:10.1016/1010-6030(92)80010-s. 
  23. 23,0 23,1 Rao, GG; Dhar, NR (1930). "Photosensitized oxidation of ammonia and ammonium salts and the problem of nitrification in soils". Soil Science 31 (5): 379–384. doi:10.1097/00010694-193105000-00004. 
  24. 24,0 24,1 McLean, WR; Ritchie, M (1965). "Reactions on titanium dioxide: the photo-oxidation of ammonia". Journal of Applied Chemistry 15 (10): 452–460. doi:10.1002/jctb.5010151003. 
  25. Pollema, CH; Milosavljevic, EM; Hendrix, JL; Solujic, L; Nelson, JH (1992). "Photocatalytic oxidation of aqueous ammonia (ammonium ion) to nitrite or nitrate at TiO2 particles". Monatshefte für Chemie 123 (4): 333–339. doi:10.1007/bf00810945. 
  26. Dhar, NR; Bhattacharya, AK; Biswas, NN (1932). "Photonitrification in soil". Soil Science 35 (4): 281–284. doi:10.1097/00010694-193304000-00002. 
  27. Dhar, NR (1934). "Denitrification in sunlight". Nature 134 (3389): 572–573. doi:10.1038/134572c0. 
  28. Dhar, NR; Pant, NN (1944). "Nitrogen loss from soils and oxide surfaces". Nature 153 (3873): 115–116. doi:10.1038/153115a0. 
  29. Rubasinghege, G; Spak, SN; Stanier, CO; Carmichael, GR; Grassian, VH (2011). "Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate". Environmental Science and Technology 45 (7): 2691–2697. doi:10.1021/es103295v. PMID 21370856. 
  30. Rubasinghege, G; Grassian, VH (2009). "Photochemistry of adsorbed nitrate on aluminum oxide particle surfaces". Journal of Physical Chemistry A 113 (27): 7818–7825. doi:10.1021/jp902252s. PMID 19534452. 
  31. 31,0 31,1 Gankanda, A; Grassian, VH (2014). "Nitrate photochemistry on laboratory proxies of mineral dust aerosol: wavelength dependence and action spectra". Journal of Physical Chemistry C 118 (50): 29117–29125. doi:10.1021/jp504399a. 
  32. 32,0 32,1 32,2 32,3 Lesko, DMB; Coddens, EM; Swomley, HD; Welch, RM; Borgatta, J; Navea, JG (2015). "Photochemistry of nitrate chemisorbed on various metal oxide surfaces". Physical Chemistry Chemical Physics 17 (32): 20775–20785. doi:10.1039/c5cp02903a. PMID 26214064. https://creativematter.skidmore.edu/cgi/viewcontent.cgi?article=1016&context=chem_fac_schol. 
  33. 33,0 33,1 33,2 Ndour, M; Conchon, P; D'Anna, B; George, C (2009). "Photochemistry of mineral dust surface as a potential atmospheric renoxification process". Geophysical Research Letters 36 (5): L05816. doi:10.1029/2008GL036662. 
  34. Stemmler, K; Ammann, M; Donders, C; Kleffmann, J; George, C (2006). "Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid". Nature 440 (7081): 195–198. doi:10.1038/nature04603. PMID 16525469. 
  35. Ohtani, B; Kakimoto, M; Miyadzu, H; Nishimoto, S; Kagiya, T (1988). "Effect of surface-adsorbed 2-propanol on the photocatalytic reduction of silver and/or nitrate ions in acidic TiO2 suspension". Journal of Physical Chemistry 92: 5773–5777. doi:10.1021/j100331a045. 
  36. Rebbert, R.E.; Ausloos, P (1978). "Decomposition of N2O over particulate matter". Geophysical Research Letters 5 (9): 761–764. doi:10.1029/gl005i009p00761. 
  37. Tanaka, K; Blyholder, G (1971). "Photocatalytic reactions on semiconductor surfaces. I. Decomposition of nitrous oxide on zinc oxide". Journal of Physical Chemistry 75 (8): 1037–1043. doi:10.1021/j100678a004. 
  38. Obalova, L; Reli, M; Lang, J; Matejka, V; Kukutschova, J; Lacny, Z; Koci, K (2013). "Photocatalytic decomposition of nitrous oxide using TiO2 and Ag-TiO2 nanocomposite thin films". Catalysis Today 209: 170–175. doi:10.1016/j.cattod.2012.11.012. http://dspace.vsb.cz/bitstream/10084/100595/2/Table.pdf. 
  39. Rao, GG; Varadanam, CI (1938). "Photo-ammonification of organic nitrogenous compounds in the soil". Nature 142 (3596): 618. doi:10.1038/142618a0. 
  40. Vahatalo, AV; Zepp, RG (2005). "Photochemical mineralization of dissolved organic nitrogen to ammonium in the Baltic Sea". Environmental Science and Technology 39 (18): 6985–6992. doi:10.1021/es050142z. PMID 16201620. 
  41. Jeff, S; Hunter, K; Vandergucht, D; Hudson, J (2012). "Photochemical mineralization of dissolved organic nitrogen to ammonia in prairie lakes". Hydrobiologia 693: 71–80. doi:10.1007/s10750-012-1087-z. 
  42. Li, K; An, X; Park, KH; Khraisheh, M; Tng, J (2014). "A critical review of CO2 photoconversion: catalysts and reactors". Catalysis Today 224: 3–12. doi:10.1016/j.cattod.2013.12.006. 
  43. Roy, SC; Varghese, OK; Paulose, M; Grimes, CA (2010). "Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons". ACS Nano 4 (3): 1259–1278. doi:10.1021/nn9015423. PMID 20141175. 
  44. Habisretinger, SN; Schmidt-Mende, L; Stolarczyk, JK (2013). "Photocatalytic reduction of CO2 on TiO2 and other semiconductors". Angewandte Chemie International Edition 52 (29): 7372–7408. doi:10.1002/anie.201207199. PMID 23765842. 
  45. Yamamura, S; Kojima, H; Iyoda, J; Kawai, W (1987). "Formation of ethyl alcohol in the photocatalytic reduction of carbon dioxide by SiC and ZnSe/metal powders". Journal of Electroanalytical Chemistry 225 (1–2): 287–290. doi:10.1016/0022-0728(87)80023-2. 
  46. Cook, RL; MacDuff, RC; Sammells, AF (1988). "Photoelectrochemical carbon dioxide reduction to hydrocarbons at ambient temperature and pressure". Journal of the Electrochemical Society 135 (12): 3069–3070. doi:10.1149/1.2095490. 
  47. Eggins BR, Robertson PKJ, Stewart JH, Woods E. 1993. Photoreduction of carbon dioxide on zinc sulfide to give four-carbon and two-carbon acids. Journal of the Chemical Society, Chemical Communications Issue 4:349-350.
  48. Hemminger, JC; Carr, R; Somorjai, GA (1978). "The photoassisted reaction of gaseous water and carbon dioxide absorbed on the SrTiO3(111) crystal face to form methane". Chemical Physics Letters 57 (1): 100–104. doi:10.1016/0009-2614(78)80359-5. 
  49. Lien, CF; Chen, MT; Lin, YF; Lin, JL (2004). "Photooxidation of methane over TiO2". Journal of the Chinese Chemical Society 51: 37–42. doi:10.1002/jccs.200400007. 
  50. Holmes, AJ; Roslev, P; McDonald, IR; Iversen, N; Henriksen, K; Murrell, JC (1999). "Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake". Applied and Environmental Microbiology 65 (8): 3312–3318. doi:10.1128/AEM.65.8.3312-3318.1999. PMID 10427012. PMC 91497. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=91497. 
  51. Yoshida, H; Matsushita, N; Kato, Y; Hattori, T (2003). "Synergistic active sites on SiO2-Al2O3-TiO2 photocatalysts for direct methane coupling". Journal of Physical Chemistry B 107: 8355–8362. doi:10.1021/jp034458+. 
  52. Kraeutler, B; Bard, AJ (1977). "Heterogeneous photocatalytic synthesis of methane from acetic acid - new Kolbe reaction pathway". Journal of the American Chemical Society 100 (7): 2239–2240. doi:10.1021/ja00475a049. 
  53. Kraeutler, B; Bard, AJ (1977). "Photoelectrosynthesis of ethane from acetate ion at an n-type TiO2 electrode - the photo-Kolbe reaction". Journal of the American Chemical Society 99: 7729–7731. doi:10.1021/ja00465a065. 
  54. Austin, AT; Vivanco, L (2006). "Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation". Nature 442 (7102): 555–558. doi:10.1038/nature05038. PMID 16885982. 
  55. Vigano, I; van Weelden, H; Holzinger, R; Keppler, F; McLeod, A; Rockmaan, T (2008). "Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components". Biogeosciences 5 (3): 937–947. doi:10.5194/bg-5-937-2008. https://hal.archives-ouvertes.fr/hal-00297962/file/bgd-5-243-2008.pdf. 
  56. McLeod, AR; Fry, SC; Loake, GJ; Messenger, DJ; Reay, DS; Smith, KA; Yun, B (2008). "Ultraviolet radiation drives methane emissions from terrestrial plant pectins". New Phytologist 180 (1): 124–132. doi:10.1111/j.1469-8137.2008.02571.x. PMID 18657215. https://www.pure.ed.ac.uk/ws/files/10947044/PDF_NewPhytologist.pdf. 
  57. Jugold, A; Althoff, F; Hurkuck, M; Greule, M; Lelieveld, J; Keppler, F (2012). "Non-microbial methane formation in oxic soils". Biogeosciences 9 (9): 11961–11987. doi:10.5194/bgd-9-11961-2012. 
  58. Moran, MA; Zepp, RG (1997). "Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter". Limnology and Oceanography 42 (6): 1307–1316. doi:10.4319/lo.1997.42.6.1307. 
  59. Feng, W; Nansheng, D (2000). "Photochemistry of hydrolytic iron(III) species and photoinduced degradation of organic compounds: a minireview". Chemosphere 41 (8): 1137–1147. doi:10.1016/s0045-6535(00)00024-2. PMID 10901238. 
  60. Liu, S; Lim, M; Fabris, R; Chow, C; Drikas, M; Amal, R (2010). "Comparison of photocatalytic degradation of natural organic matter in two Australian surface waters using multiple analytical techniques". Organic Geochemistry 41 (2): 124–129. doi:10.1016/j.orggeochem.2009.08.008. 
  61. Huang, X; Leal, M; Li, Q (2008). "Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes". Water Research 42 (4–5): 1142–1150. doi:10.1016/j.watres.2007.08.030. PMID 17904191. 
  62. Mopper, K; Zhou, X; Kieber, RJ; Kieber, DJ; Sikorski, RJ; Jones, RD (1991). "Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle". Nature 353 (6339): 60–62. doi:10.1038/353060a0. 
  63. Helms, JR; Glinski, DA; Mead, RN; Southwell, MW; Avery, GB; Kieber, RJ; Skrabal, SA (2014). "Photochemical dissolution of organic matter from resuspended sediments: impact of source and diagenetic state on photorelease". Organic Geochemistry 73: 83–89. doi:10.1016/j.orggeochem.2014.05.011. 
  64. Palit, C.C.; Dhar, N.R. (1928). "Oxidation of carbohydrates, fats, and nitrogenous products by air in presence of sunlight". Journal of Physical Chemistry 32 (8): 1263–1268. doi:10.1021/j150290a014. 
  65. Tanaka, K; Hisanaga, T (1994). "Photodegradation of chlorofluorocarbon alternatives on metal oxide". Solar Energy 52 (5): 447–450. doi:10.1016/0038-092x(94)90122-i. 
  66. Ismail, AA; Bahnemann, DW (2014). "Photochemical splitting of water for hydrogen production by photocatalysis: a review". Solar Energy Materials and Solar Cells 128: 85–101. doi:10.1016/j.solmat.2014.04.037. 
  67. Abe, R (2010). "Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation". Journal of Photochemistry and Photobiology C 11 (4): 179–209. doi:10.1016/j.jphotochemrev.2011.02.003. 
  68. Ohmori, T; Takahasi, H; Mametsuka, H; Suzuki, E (2000). "Photocatalytic oxygen evolution on alpha-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent". Physical Chemistry Chemical Physics 2 (15): 3519–3522. doi:10.1039/b003977m. 
  69. Silva, CG; Boulzi, Y; Fornes, V; Garcia, H (2009). "Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water". Journal of the American Chemical Society 131 (38): 13833–13839. doi:10.1021/ja905467v. PMID 19725513. 
  70. Xu, SM; Pan, T; Dou, YB; Yan, H; Zhang, ST; Ning, FY; Shi, WY; Wei, M (2015). "Theoretical and experimental study on M(II)M(III)-layered double hydroxides as efficient photocatalysts toward oxygen evolution from water". Journal of Physical Chemistry 119: 18823–18834. doi:10.1021/acs.jpcc.5b01819. 
  71. Najafpour, MM; Moghaddam, AN; Allakhverdiev, SI; Govindjee (2012). "Biological water oxidation: lessons from nature". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817 (8): 1110–1121. doi:10.1016/j.bbabio.2012.04.002. PMID 22507946. 
  72. Maeda, K (2013). "Direct splitting of pure water into hydrogen and oxygen using rutile titania powder as a photocatalyst". Chemical Communications 49 (75): 8404–8406. doi:10.1039/c3cc44151b. PMID 23938403. 
  73. 73,0 73,1 Berthelot, D; Gaudechon, H (1910). "Synthese photochimique des hydrates de carbone aux depens des elements de l'anhydride carbonique et de la vapeur d'eau, en l'absence de chlorophylle; synthese photochimique des composes quaternaires". Comptes Rendus de l'Académie des Sciences 150: 1690–1693. 
  74. Reiche, H; Barr, AJ (1979). "Heterogeneous photosynthetic production of amino acids from methane-ammonia-water at Pt/TiO2. Implications in chemical evolution". Journal of the American Chemical Society 101: 3127–3128. doi:10.1021/ja00505a054. 
  75. Joe, H; Kuma, K; Paplawsky, W; Rea, B; Arrhenius, G (1986). "Abiotic photosynthesis from ferrous carbonate (siderite) and water". Origins of Life and Evolution of the Biosphere 16 (3–4): 369–370. doi:10.1007/bf02422078. 
  76. Siffert, C; Sulzberger, B (1991). "Light-induced dissolution of hematite in the presence of oxalate: a case study". Langmuir 7 (8): 1627–1634. doi:10.1021/la00056a014. 
  77. Waite, TD; Morel, FMM (1984). "Photoreductive dissolution of colloidal iron oxide: effect of citrate". Journal of Colloid and Interface Science 102 (1): 121–137. doi:10.1016/0021-9797(84)90206-6. 
  78. 78,0 78,1 Waite, TD; Morel, FMM (1984). "Photoreductive dissolution of colloidal iron oxides in natural waters". Environmental Science and Technology 18 (11): 860–868. doi:10.1021/es00129a010. PMID 22283217. 
  79. Sherman, DM (2005). "Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: thermodynamics of photochemical reductive dissolution in aquatic environments". Geochimica et Cosmochimica Acta 69 (13): 3249–3255. doi:10.1016/j.gca.2005.01.023. 
  80. Helms, JR; Mao, J; Schmidt-Rohr, K; Abdulla, H; Mopper, K (2013). "Photochemical flocculation of terrestrial dissolved organic matter and iron". Geochimica et Cosmochimica Acta 121: 398–413. doi:10.1016/j.gca.2013.07.025. 
  81. Kisch H. 2015. Semiconductor photocatalysis for atom-economic reactions. In: Bahnemann DW and Robertson PKJ (Eds). Environmental Photochemistry III. Springer. p. 186.