Chiziqli tenglama

Vikipediya, ochiq ensiklopediya
Chiziqli tenglama grafigi

Chiziqli tenglama — bu ikkala tomoni ham birinchi darajali (nomaʼlum) koʻphadlardan iborat tenglamadir.

Chiziqli tenglamalar (matematikada) — nomaʼlumlarning faqat birinchi darajalari aniq koeffitsiyentlar bilan qatnashib, ularning yuqori darajalari, oʻzaro koʻpaytmalari va murakkab funksiyalari qatnashmagan tenglamalar. Bir nomaʼlumli Chiziqli tenglamalar ax= koʻrinishda boʻladi. Bir necha nomaʼlumli hollarda esa Chiziqli tenglamalar sistemalari bilan ish koʻriladi. Aniqlovchi va matritsa toʻgʻrisidagi taʼlimotlar paydo boʻlganidan keyin Chiziqli tenglamalar nazariyasi rivojlandi. Chiziqlilik tushunchasi algebrik tenglamalardan mat.ning boshqa sohalaridagi tengliklarga koʻchiriladi. Mac, chiziqli differensial tenglama nomaʼlum funksiya va uning hosilalari chizikli, yaʼni 1darajaliga kiradigan tenglamadir.

Chiziqli tenglamani quyidagi koʻrinishda ifodalash mumkin: ax + b = 0, bu yerda a - nol boʻlmagan son, b - ozod had.

Bir x o’zgaruvchili chiziqli tenglama deb ax=b (bu erda a va b – haqiqiy sonlar) ko’rinishidagi tenglamaga aytiladi. Bu yerda a – o’zgaruvchi oldidagi koeffitsient, b esa ozod had deyiladi.ax = b chiziqli tenglama uchun uchta hol ro’y berishi mumkin:

  • a ≠ 0; bu holda tenglama ildizi

ga teng;

  • a=0, b=0; bu holda tenglama 0*x=0 ko’rinishga keladi va har qanday x da to’g’ri bo’ladi;
  • a=0, b≠0; bu holda tenglama 0*x=b ko’rinishga keladi va ildizga ega bo’lmaydi.

Havolalar[tahrir]